
Fast Data apps with Alpakka Kafka
connector and Akka Streams
Sean Glover, Lightbend
@seg1o

Who am I?

I’m Sean Glover
• Principal Engineer at Lightbend
• Member of the Fast Data Platform team
• Organizer of Scala Toronto (scalator)
• Contributor to various projects in the Kafka ecosystem

including Kafka, Alpakka Kafka (reactive-kafka), Strimzi,
DC/OS Commons SDK

2

/ seg1o

https://www.lightbend.com/
https://www.lightbend.com/products/fast-data-platform
https://www.meetup.com/scalator/
https://kafka.apache.org
https://github.com/akka/reactive-kafka
http://strimzi.io/
https://github.com/mesosphere/dcos-commons/
http://twitter.com/seg1o

3

“ “The Alpakka project is an initiative to implement a library
of integration modules to build stream-aware, reactive,
pipelines for Java and Scala.

4

Cloud Services Data Stores

JMS

Messaging

5

kafka connector

“ “This Alpakka Kafka connector lets
you connect Apache Kafka to Akka
Streams. It was formerly known as
Akka Streams Kafka and even
Reactive Kafka.

Top Alpakka Modules

6

Alpakka Module Downloads in August 2018

Kafka 61177

Cassandra 15946

AWS S3 15075

MQTT 11403

File 10636

Simple Codecs 8285

CSV 7428

AWS SQS 5385

AMQP 4036

7

“ “
Akka Streams is a library toolkit to
provide low latency complex event
processing streaming semantics
using the Reactive Streams
specification implemented internally
with an Akka actor system.

streams

8

Source Flow Sink

User Messages (flow downstream)

Internal Back-pressure Messages (flow upstream)

Outlet

Inlet

streams

Reactive Streams Specification

9

“ “Reactive Streams is an initiative to
provide a standard for asynchronous
stream processing with non-blocking
back pressure.

http://www.reactive-streams.org/

http://www.reactive-streams.org/

Reactive Streams Libraries

10

streams

Spec now part of JDK 9
java.util.concurrent.Flow

migrating to

https://docs.oracle.com/javase/9/docs/api/java/util/concurrent/Flow.html

Back-pressure

11

Source Flow Sink

Source Kafka Topic

Destination Kafka Topic

I need some
messages.

Demand request is
sent upstream

I need to load
some messages
for downstream

...
Key: EN, Value: {“message”: “Hi Akka!” }
Key: FR, Value: {“message”: “Salut Akka!” }
Key: ES, Value: {“message”: “Hola Akka!” }
...

Demand satisfied
downstream

...
Key: EN, Value: {“message”: “Bye Akka!” }
Key: FR, Value: {“message”: “Au revoir Akka!” }
Key: ES, Value: {“message”: “Adiós Akka!” }
...

openclipart

https://openclipart.org/detail/262222/envelope

Dynamic Push Pull

12

Source Flow

Bounded Mailbox

Flow sends demand request
(pull) of 5 messages max

x

I can handle 5
more messages

Source sends (push) a batch
of 5 messages downstream

I can’t send more
messages downstream

because I no more
demand to fulfill.

Flow’s mailbox is full!

Slow Consumer

Fast Producer

openclipart

https://openclipart.org/detail/262222/envelope

Akka Streams Factorial Example
import ...

object Main extends App {

 implicit val system = ActorSystem("QuickStart")

 implicit val materializer = ActorMaterializer()

 val source: Source[Int, NotUsed] = Source(1 to 100)

 val factorials = source.scan(BigInt(1))((acc, next) ⇒ acc * next)

 val result: Future[IOResult] =

 factorials

 .map(num => ByteString(s"$num\n"))

 .runWith(FileIO.toPath(Paths.get("factorials.txt")))

}

13

https://doc.akka.io/docs/akka/2.5/stream/stream-quickstart.html

https://doc.akka.io/docs/akka/2.5/stream/stream-quickstart.html

Kafka

14

Kafka Documentation

“ “Kafka is a distributed streaming
system. It’s best suited to support
fast, high volume, and fault
tolerant, data streaming platforms.

https://kafka.apache.org/intro

When to use Alpakka Kafka?

1. To build back-pressure aware integrations
2. Complex Event Processing
3. A need to model the most complex of graphs

15

Alpakka Kafka Setup

val consumerClientConfig = system.settings. config.getConfig("akka.kafka.consumer")

val consumerSettings =

 ConsumerSettings(consumerClientConfig, new StringDeserializer, new ByteArrayDeserializer)

 .withBootstrapServers("localhost:9092")

 .withGroupId("group1")

 .withProperty(ConsumerConfig. AUTO_OFFSET_RESET_CONFIG, "earliest")

val producerClientConfig = system.settings. config.getConfig("akka.kafka.producer")

val producerSettings = ProducerSettings(system, new StringSerializer, new ByteArraySerializer)

 .withBootstrapServers("localhost:9092")

16

Alpakka Kafka config & Kafka Client
config can go here

Set ad-hoc Kafka client config

https://doc.akka.io/docs/akka-stream-kafka/current/consumer.html#settings
https://kafka.apache.org/documentation/#newconsumerconfigs
https://kafka.apache.org/documentation/#newconsumerconfigs

Simple Consume, Transform, Produce Workflow

val control =

 Consumer

 .committableSource(consumerSettings, Subscriptions. topics("topic1", "topic2"))

 .map { msg =>

 ProducerMessage. Message[String, Array[Byte], ConsumerMessage.CommittableOffset](

 new ProducerRecord("targetTopic", msg.record.value),

 msg.committableOffset

)

 }

 .toMat(Producer. commitableSink(producerSettings))(Keep.both)

 .mapMaterializedValue(DrainingControl. apply)

 .run()

// Add shutdown hook to respond to SIGTERM and gracefully shutdown stream

sys.ShutdownHookThread {

 Await.result(control.shutdown(), 10.seconds)

}

17

Kafka Consumer Subscription

Committable Source provides Kafka
offset storage committing semantics

Transform and produce a new message with
reference to offset of consumed message

Create ProducerMessage with reference to
consumer offset it was processed from

Produce ProducerMessage and automatically
commit the consumed message once it’s been
acknowledged

Graceful shutdown on SIGTERM

Consumer Groups

Why use Consumer Groups?

1. Easy, robust, and
performant scaling of
consumers to reduce
consumer lag

19

Back
Pressure

Consumer Group

Latency and Offset Lag

20

Cluster

Topic

Producer 1

Producer 2

Producer n

...

Throughput: 10 MB/s

Consumer 1

Consumer 2

Consumer 3

Consumer Throughput ~3 MB/s
each

~9 MB/s

Total offset lag and latency is
growing.

openclipart

https://openclipart.org/detail/262222/envelope

Consumer Group

Latency and Offset Lag

21

Cluster

Topic

Producer 1

Producer 2

Producer n

...

Data Throughput: 10 MB/s

Consumer 1

Consumer 2

Consumer 3

Consumer 4

Add new consumer and rebalance

Consumers now can support a
throughput of ~12 MB/s

Offset lag and latency decreases until
consumers are caught up

Anatomy of a Consumer Group

22

Client A

Client B

Client C

Cluster
Consumer Group

Partitions: 0,1,2

Partitions: 3,4,5

Partitions: 6,7,8

Consumer Group Offsets topic
Ex)

P0: 100489
P1: 128048
P2: 184082
P3: 596837
P4: 110847
P5: 99472
P6: 148270
P7: 3582785
P8: 182483

Consumer
Offset Log

T3

T1 T2

Consumer
Group

Coordinator

Consumer Group Topic Subscription

Important Consumer Group Client Config

Topic Subscription:

Subscription.topics(“Topic1”, “Topic2”, “Topic3”)

Kafka Consumer Properties:

group.id: [“my-group”]
session.timeout.ms: [30000 ms]
partition.assignment.strategy: [RangeAssignor]
heartbeat.interval.ms: [3000 ms]

Consumer Group
Leader

Consumer Group Rebalance (1/7)

23

Client A

Client B

Client C

Cluster
Consumer Group

Partitions: 0,1,2

Partitions: 3,4,5

Partitions: 6,7,8

Consumer
Offset Log

T3

T1 T2

Consumer
Group

Coordinator

Consumer Group
Leader

Consumer Group Rebalance (2/7)

24

Client D

Client A

Client B

Client C

Cluster
Consumer Group

Partitions: 0,1,2

Partitions: 3,4,5

Partitions: 6,7,8

Consumer
Offset Log

T3

T1 T2

Consumer
Group

Coordinator

Consumer Group
Leader

Client D requests to join the consumer groupNew Client D with same group.id sends a request to join
the group to Coordinator

Consumer Group Rebalance (3/7)

25

Client D

Client A

Client B

Client C

Cluster
Consumer Group

Partitions: 0,1,2

Partitions: 3,4,5

Partitions: 6,7,8

Consumer
Offset Log

T3

T1 T2

Consumer
Group

Coordinator

Consumer Group
Leader

Consumer group coordinator requests group leader to
calculate new Client:partition assignments.

Consumer Group Rebalance (4/7)

26

Client D

Client A

Client B

Client C

Cluster
Consumer Group

Partitions: 0,1,2

Partitions: 3,4,5

Partitions: 6,7,8

Consumer
Offset Log

T3

T1 T2

Consumer
Group

Coordinator

Consumer Group
Leader

Consumer group leader sends new Client:Partition
assignment to group coordinator.

Consumer Group Rebalance (5/7)

27

Client D

Client A

Client B

Client C

Cluster
Consumer Group

Assign Partitions: 0,1

Assign Partitions: 2,3

Ass
ign

 P
art

itio
ns

: 6
,7,

8

Consumer
Offset Log

T3

T1 T2

Consumer
Group

Coordinator

Consumer Group
Leader

Consumer group coordinator informs all clients of their
new Client:Partition assignments.

Assi
gn Partiti

ons: 4
,5

Consumer Group Rebalance (6/7)

28

Client D

Client A

Client B

Client C

Cluster
Consumer Group

Consumer
Offset Log

T3

T1 T2

Consumer
Group

Coordinator

Consumer Group
Leader

Clients that had partitions revoked are given the chance
to commit their latest processed offsets.

Partitions to Commit: 2
Partitions to Commit: 3,5
Partitions to Commit: 6,7,8

Consumer Group Rebalance (7/7)

29

Client D

Client A

Client B

Client C

Cluster
Consumer Group

Consumer
Offset Log

T3

T1 T2

Consumer
Group

Coordinator

Consumer Group
Leader

Rebalance complete. Clients begin consuming partitions
from their last committed offsets.

Partitions: 0,1

Partitions: 2,3

Partitions: 4,5

Partiti
ons: 6

,7,8

Commit on Consumer Group Rebalance

30

val consumerClientConfig = system.settings. config.getConfig("akka.kafka.consumer")

val consumerSettings = ConsumerSettings(consumerClientConfig, new StringDeserializer, new ByteArrayDeserializer)

 .withGroupId("group1")

class RebalanceListener extends Actor with ActorLogging {

 def receive: Receive = {

 case TopicPartitionsAssigned(sub, assigned) =>

 case TopicPartitionsRevoked(sub, revoked) =>

 commitProcessedMessages(revoked)

 }

}

val subscription = Subscriptions. topics("topic1", "topic2")

 .withRebalanceListener(system.actorOf(Props[RebalanceListener]))

val control = Consumer. committableSource(consumerSettings, subscription)

 ...

Declare a RebalanceListener Actor to
handle assigned and revoked partitions

Commit offsets for messages processed
from revoked partitions

Assign RebalanceListener to topic
subscription.

Transactional “Exactly-Once”

Kafka Transactions

32

“ “Transactions enable atomic writes to
multiple Kafka topics and partitions.
All of the messages included in the
transaction will be successfully written
or none of them will be.

Message Delivery Semantics

• At most once
• At least once
• “Exactly once”

33

openclipart

https://openclipart.org/detail/262222/envelope

Exactly Once Delivery vs Exactly Once Processing

34

“ “Exactly-once message delivery is
impossible between two parties where
failures of communication are
possible.

Two Generals/Byzantine Generals problem

https://en.wikipedia.org/wiki/Two_Generals%27_Problem

Why use Transactions?

1. Zero tolerance for duplicate messages
2. Less boilerplate (deduping, client offset

management)

35

Anatomy of Kafka Transactions

36

Client

Cluster Consumer
Offset Log

Topic Sub

Consumer
Group

Coordinator

Transaction
Log

Transaction
Coordinator

Topic Dest

Transformation

CM UM UM CM UM UM

Control Messages

Important Client Config
Topic Subscription:

Subscription.topics(“Topic1”, “Topic2”, “Topic3”)

Destination topic partitions get included in the transaction based on messages that are
produced.

Kafka Consumer Properties:

group.id: “my-group”
isolation.level: “read_committed”
plus other relevant consumer group configuration

Kafka Producer Properties:

transactional.id: “my-transaction”
enable.idempotence: “true” (implicit)
max.in.flight.requests.per.connection: “1” (implicit)

“Consume, Transform, Produce”

Kafka Features That Enable Transactions

1. Idempotent producer
2. Multiple partition atomic writes
3. Consumer read isolation level

37

Idempotent Producer (1/5)

38

Client

Cluster Broker

KafkaProducer.send(k,v)
sequence num = 0
producer id = 123

Leader Partition

Log

Idempotent Producer (2/5)

39

Client

Cluster Broker

Leader Partition

Log

Append (k,v) to partition
sequence num = 0
producer id = 123

(k,v)
seq = 0
pid = 123

Idempotent Producer (3/5)

40

Client

Cluster Broker

Leader Partition

Log

(k,v)
seq = 0
pid = 123

KafkaProducer.send(k,v)
sequence num = 0
producer id = 123

Broker acknowledgement fails

x

Idempotent Producer (4/5)

41

Client

Cluster Broker

Leader Partition

Log

(k,v)
seq = 0
pid = 123

(Client Retry)
KafkaProducer.send(k,v)
sequence num = 0
producer id = 123

Idempotent Producer (5/5)

42

Client

Cluster Broker

Leader Partition

Log

(k,v)
seq = 0
pid = 123

KafkaProducer.send(k,v)
sequence num = 0
producer id = 123

Broker acknowledgement succeeds
ack(duplicate)

Multiple Partition Atomic Writes

43

Client

Consumer
Offset Log

Transactions
Log

User Defined
Partition 1

User Defined
Partition 2

User Defined
Partition 3

Cluster Transaction and Consumer Group Coordinators

CM

UM

UM

CM

UM

UM

CM

UM

UM

CM

CM

CM

CM

CM

CM

Ex) Second phase of two phase commit

KafkaProducer.commitTransaction()

Last Offset Processed for
Consumer Subscription

Transaction Committed
(internal) Transaction Committed control

messages (user topics)

Multiple Partitions Committed Atomically, “All or nothing”

Consumer Read Isolation Level

44

Client

User Defined
Partition 1

User Defined
Partition 2

User Defined
Partition 3Cluster

CM

UM

UM

CM

UM

UM

CM

UM

UM

Kafka Consumer Properties:
isolation.level: “read_committed”

Transactional Pipeline Latency

45

Client Client Client

Transaction Batches every 100ms

End-to-end Latency
~300ms

Alpakka Kafka Transactions

46

Transactional
Source Transform

Transactional
Sink

Source Kafka Partition(s)

Destination Kafka Partitions

...
Key: EN, Value: {“message”: “Hi Akka!” }
Key: FR, Value: {“message”: “Salut Akka!” }
Key: ES, Value: {“message”: “Hola Akka!” }
...

...
Key: EN, Value: {“message”: “Bye Akka!” }
Key: FR, Value: {“message”: “Au revoir Akka!” }
Key: ES, Value: {“message”: “Adiós Akka!” }
...

akka.kafka.producer.eos-commit-interval = 100ms

Cluster

Cluster
Messages waiting for ack
before commit

openclipart

https://openclipart.org/detail/262222/envelope

Transactional GraphStage (1/7)

47

Transactional GraphStage

Transaction

Flow
Back Pressure Status

Resume Demand
Waiting for ACK

Commit Loop

Waiting

Transaction Status

Begin Transaction

Mailbox

Transactional GraphStage (2/7)

48

Transactional GraphStage

Transaction

Flow
Back Pressure Status

Resume Demand
Waiting for ACK

Commit Loop

Commit Interval Elapses

Transaction Status

Transaction is Open

Mailbox

Messages flowing

Transactional GraphStage (3/7)

49

Transactional GraphStage

Transaction

Flow
Back Pressure Status

Resume Demand
Waiting for ACK

Transaction Status

Transaction is Open

Commit Loop

Commit Interval ElapsesMessages flowing

Mailbox
Commit loop “tick”

message

100ms

Transactional GraphStage (4/7)

50

Transactional GraphStage

Transaction

Flow
Back Pressure Status

Suspend Demand
Waiting for ACK

Transaction Status

Transaction is Open

Commit Loop

Commit Interval Elapses

x

Mailbox

Messages stopped

Transactional GraphStage (5/7)

51

Transactional GraphStage

Transaction

Flow
Back Pressure Status

Suspend Demand
Waiting for ACK

Transaction Status

Send Consumed Offsets

Commit Loop

Commit Interval Elapses

x

Mailbox

Messages stopped

Transactional GraphStage (6/7)

52

Transactional GraphStage

Transaction

Flow
Back Pressure Status

Suspend Demand
Waiting for ACK

Transaction Status

Commit Transaction

Commit Loop

Commit Interval Elapses

x

Mailbox

Messages stopped

Transactional GraphStage (7/7)

53

Transactional GraphStage

Transaction

Flow
Back Pressure Status

Resume Demand
Waiting for ACK

Commit Loop

Waiting

Transaction Status

Begin New Transaction

Mailbox

Messages flowing
again

Alpakka Kafka Transactions

54

val producerSettings = ProducerSettings(system, new StringSerializer, new ByteArraySerializer)

 .withBootstrapServers("localhost:9092")

 .withEosCommitInterval(100.millis)

val control =

 Transactional

 .source(consumerSettings, Subscriptions. topics("source-topic"))

 .via(transform)

 .map { msg =>

 ProducerMessage. Message(new ProducerRecord[String, Array[Byte]]("sink-topic", msg.record.value),

 msg.partitionOffset)

 }

 .to(Transactional. sink(producerSettings, "transactional-id"))

 .run()

Optionally provide a Transaction commit
interval (default is 100ms)

Use Transactional.source to
propagate necessary info to
Transactional.sink (CG ID, Offsets)

Call Transactional.sink or .flow to
produce and commit messages.

Complex Event Processing

What is Complex Event Processing (CEP)?

56

“ “
Complex event processing, or CEP, is
event processing that combines data
from multiple sources to infer events
or patterns that suggest more
complicated circumstances.

Foundations of Complex Event Processing, Cornell

https://arxiv.org/abs/1709.05369

Calling into an Akka Actor System

57

Source
Ask

? SinkCluster Cluster

“Ask pattern” models non-blocking request and
response of Akka messages.

openclipart

Actor System
& JVM

Actor System
& JVM

Actor System
& JVM

Cluster
Router

Akka Cluster/Actor System

Actor

https://openclipart.org/detail/262222/envelope

Actor System Integration
class ProblemSolverRouter extends Actor {

 def receive = {

 case problem: Problem =>

 val solution = businessLogic(problem)

 sender() ! solution // reply to the ask

 }

}

...

val control = Consumer

 .committableSource(consumerSettings, Subscriptions. topics("topic1", "topic2"))

 .map(parseProblem)

 .mapAsync(parallelism = 5)(problem => (problemSolverRouter ? problem).mapTo[Solution])

 .map { solution => ProducerMessage. Message[String, Array[Byte], ConsumerMessage.CommittableOffset](

 new ProducerRecord("targetTopic", solution.toBytes), solution.committableOffset)

 }

 .toMat(Producer. commitableSink(producerSettings))(Keep.both)

 .mapMaterializedValue(DrainingControl. apply)

 .run()

58

Transform your stream by processing messages in
an Actor System. All you need is an ActorRef.

Use Ask pattern (? function) to call provided
ActorRef to get an async response

Parallelism used to limit how many messages in
flight so we don’t overwhelm mailbox of destination
Actor and maintain stream back-pressure.

Persistent Stateful Stages

Options for implementing Stateful Streams

1. Provided Akka Streams stages: fold, scan,
etc.

2. Custom GraphStage
3. Call into an Akka Actor System

60

Persistent Stateful Stages using Event Sourcing

61

1. Recover state after failure
2. Create an event log
3. Share state

Persistent GraphStage using Event Sourcing

62

Source

Stateful
Stage

SinkCluster Cluster

Event Log

Response (Event)
Triggers State Change

akka.persistence.Journal

State

Akka Persistence Plugins

Request
Handler

Event
HandlerRequest (Command/Query)

Writes Reads
(Replays)

openclipart

https://index.scala-lang.org/search?topics=akka-persistence
https://openclipart.org/detail/262222/envelope

63

krasserm / akka-stream-eventsourcing

“ “This project brings to Akka Streams
what Akka Persistence brings to Akka
Actors: persistence via event
sourcing.

Experimental
Public Domain Vectors

https://github.com/krasserm/akka-stream-eventsourcing
https://publicdomainvectors.org/en/free-clipart/Warning-notification-sign-vector-image/8154.html

New in Alpakka Kafka 1.0-M1

Alpakka Kafka 1.0M1 Release Notes

Released Nov 6, 2018. Highlights:
● Upgraded the Kafka client to version 2.0.0 #544 by @fr3akX

○ Support new API’s from KIP-299: Fix Consumer indefinite blocking behaviour in #614 by
@zaharidichev

● New Committer.sink for standardised committing #622 by @rtimush
● Commit with metadata #563 and #579 by @johnclara
● Factored out akka.kafka.testkit for internal and external use: see Testing
● Support for merging commit batches #584 by @rtimush
● Reduced risk of message loss for partitioned sources #589
● Expose Kafka errors to stream #617
● Java APIs for all settings classes #616
● Much more comprehensive tests

65

https://github.com/akka/alpakka-kafka/pull/544
https://github.com/fr3akX
https://cwiki.apache.org/confluence/display/KAFKA/KIP-266%3A+Fix+consumer+indefinite+blocking+behavior
https://github.com/akka/alpakka-kafka/pull/614
https://github.com/zaharidichev
https://github.com/akka/alpakka-kafka/pull/622
https://github.com/rtimush
https://github.com/akka/alpakka-kafka/pull/563
https://github.com/akka/alpakka-kafka/pull/579
https://github.com/johnclara
https://doc.akka.io/docs/akka-stream-kafka/current/testing.html
https://github.com/akka/alpakka-kafka/pull/584
https://github.com/rtimush
https://github.com/akka/alpakka-kafka/pull/589
https://github.com/akka/alpakka-kafka/pull/617
https://github.com/akka/alpakka-kafka/pull/616

Conclusion

67

kafka connector

openclipart

https://openclipart.org/detail/254023/building-block-toys

Lightbend Fast Data Platform

68

http://lightbend.com/fast-data-platform

http://lightbend.com/fast-data-platform

Thank You!

Sean Glover
@seg1o
in/seanaglover
sean.glover@lightbend.com

Free eBook!
https://bit.ly/2J9xmZm

https://twitter.com/seg1o
https://www.linkedin.com/in/seanaglover/
mailto:sean.glover@lightbend.com
https://bit.ly/2J9xmZm

