

https://mesosphere.com/product/?utm_source=oreilly

Gerard Maas, Stavros Kontopoulos, and
Sean Glover

Designing Fast Data
Application Architectures

Boston Farnham Sebastopol TokyoBeijing Boston Farnham Sebastopol TokyoBeijing

978-1-492-04487-1

[LSI]

Designing Fast Data Application Architectures
by Gerard Maas, Stavros Kontopoulos, and Sean Glover

Copyright © 2018 O’Reilly Media, Inc. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA
9547.

O’Reilly books may be purchased for educational, business, or sales promotional use.
Online editions are also available for most titles (http://oreilly.com/safari). For more
information, contact our corporate/institutional sales department: 800-998-9938 or
corporate@oreilly.com.

Editors: Susan Conant and Jeff Bleiel
Production Editor: Nicholas Adams
Copyeditor: Sharon Wilkey

Interior Designer: David Futato
Cover Designer: Randy Comer
Illustrator: Rebecca Demarest

April 2018: First Edition

Revision History for the First Edition
2018-03-30: First Release

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Designing Fast
Data Application Architectures, the cover image, and related trade dress are trade‐
marks of O’Reilly Media, Inc.

While the publisher and the authors have used good faith efforts to ensure that the
information and instructions contained in this work are accurate, the publisher and
the authors disclaim all responsibility for errors or omissions, including without
limitation responsibility for damages resulting from the use of or reliance on this
work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is sub‐
ject to open source licenses or the intellectual property rights of others, it is your
responsibility to ensure that your use thereof complies with such licenses and/or
rights.

This work is part of a collaboration between O’Reilly and Lightbend. See our state‐
ment of editorial independence.

http://oreilly.com/safari
http://www.oreilly.com/about/editorial_independence.html
http://www.oreilly.com/about/editorial_independence.html

Table of Contents

Introduction. v

1. The Anatomy of Fast Data Applications. 1
A Basic Application Model 1
Streaming Data Sources 2
Processing Engines 3
Data Sinks 5

2. Dissecting the SMACK Stack. 7
The SMACK Stack 7
Functional Composition of the SMACK Stack 8

3. The Message Backbone. 11
Understanding Your Messaging Requirements 12
Data Ingestion 12
Fast Data, Low Latency 14
Message Delivery Semantics 15
Distributing Messages 15

4. Compute Engines. 17
Micro-Batch Processing 17
One-at-a-Time Processing 18
How to Choose 19

5. Storage. 21
Storage as the Fast Data Borders 21
The Message Backbone as Transition Point 22

iii

6. Serving. 23
Sharing Stateful Streaming State 24
Data-Driven Microservices 24
State and Microservices 25

7. Substrate. 27
Deployment Environments for Fast Data Apps 28
Application Containerization 28
Resource Scheduling 29
Apache Mesos 29
Kubernetes 30
Cloud Deployments 30

8. Conclusions. 33

iv | Table of Contents

Introduction

We live in a digital world. Many of our daily interactions are, in per‐
sonal and professional contexts, being proxied through digitized
processes that create the opportunity to capture and analyze mes‐
sages from these interactions. Let’s take something as simple as our
daily cup of coffee: whether it’s adding a like on our favorite coffee
shop’s Facebook page, posting a picture of our latte macchiato on
Instagram, pushing the Amazon Dash Button for a refill of our
usual brand, or placing an online order for Kenyan coffee beans, we
can see that our coffee experience generates plenty of events that
produce direct and indirect results.

For example, pressing the Amazon Dash Button sends an event
message to Amazon. As a direct result of that action, the message is
processed by an order-taking system that produces a purchase order
and forwards it to a warehouse, eventually resulting in a package
being delivered to us. At the same time, a machine learning model
consumes that same message to add coffee as an interest to our user
profile. A week later, we visit Amazon and see a new suggestion
based on our coffee purchase. Our initial single push of a button is
now persisted in several systems and in several forms. We could
consider our purchase order as a direct transformation of the initial
message, while our machine-learned user profile change could be
seen as a sophisticated aggregation.

To remain competitive in a market that demands real-time respon‐
ses to these digital pulses, organizations are adopting Fast Data
applications as a key asset in their technology portfolio. This appli‐
cation development is driven by the need to accelerate the extraction
of value from the data entering the organization. The streaming

v

workloads that underpin Fast Data applications are often comple‐
mentary to or work alongside existing batch-oriented processes. In
some cases, they even completely replace legacy batch processes as
the maturing streaming technology becomes able to deliver the data
consistency warranties that organizations require.

Fast Data applications take many forms, from streaming ETL
(extract, transform, and load) workloads, to crunching data for
online dashboards, to estimating your purchase likelihood in a
machine learning–driven product recommendation. Although the
requirements for Fast Data applications vary wildly from one use
case to the next, we can observe common architectural patterns that
form the foundations of successful deployments.

This report identifies the key architectural characteristics of Fast
Data application architectures, breaks these architectures into func‐
tional blocks, and explores some of the leading technologies that
implement these functions. After reading this report, the reader will
have a global understanding of Fast Data applications; their key
architectural characteristics; and how to choose, combine, and run
available technologies to build resilient, scalable, and responsive sys‐
tems that deliver the Fast Data application that their industry
requires.

vi | Introduction

CHAPTER 1

The Anatomy of Fast Data
Applications

Nowadays, it is becoming the norm for enterprises to move toward
creating data-driven business-value streams in order to compete
effectively. This requires all related data, created internally or exter‐
nally, to be available to the right people at the right time, so real
value can be extracted in different forms at different stages—for
example, reports, insights, and alerts. Capturing data is only the first
step. Distributing data to the right places and in the right form
within the organization is key for a successful data-driven strategy.

A Basic Application Model
From a high-level perspective, we can observe three main functional
areas in Fast Data applications, illustrated in Figure 1-1:

Data sources
How and where we acquire the data

Processing engines
How to transform the incoming raw data in valuable assets

Data sinks
How to connect the results from the stream analytics with other
streams or applications

1

Figure 1-1. High-level streaming model

Streaming Data Sources
Streaming data is a potentially infinite sequence of data points, gen‐
erated by one or many sources, that is continuously collected and
delivered to a consumer over a transport (typically, a network).

In a data stream, we discern individual messages that contain
records about an interaction. These records could be, for example, a
set of measurements of our electricity meter, a description of the
clicks on a web page, or still images from a security camera. As we
can observe, some of these data sources are distributed, as in the
case of electricity meters at each home, while others might be cen‐
tralized in a particular place, like a web server in a data center.

In this report, we will make an abstraction of how the data gets to
our processing backend and assume that our stream is available at
the point of ingestion. This will enable us to focus on how to process
the data and create value out of it.

Stream Properties
We can characterize a stream by the number of messages we receive
over a period of time. Called the throughput of the data source, this
is an important metric to take into consideration when defining our
architecture, as we will see later.

Another important metric often related to streaming sources is
latency. Latency can be measured only between two points in a given
application flow. Going back to our electricity meter example, the
time it takes for a reading produced by the electricity meter at our
home to arrive at the server of the utility provider is the network
latency between the edge and the server. When we talk about latency
of a streaming source, we are often referring to how fast the data
arrives from the actual producer to our collection point. We also talk
about processing latency, which is the time it takes for a message to
be handled by the system from the moment it enters the system,
until the moment it produces a result.

2 | Chapter 1: The Anatomy of Fast Data Applications

From the perspective of a Fast Data platform, streaming data arrives
over the network, typically terminated by a scalable adaptor that can
persist the data within the internal infrastructure. This capture pro‐
cess needs to scale up to the same throughput characteristics of the
streaming source or provide some means of feedback to the origi‐
nating party to let them adapt their data production to the capacity
of the receiver. In many distributed scenarios, adapting by the origi‐
nating party is not always possible, as edge devices often consider
the processing backend as always available.

Once the event messages are within the backend infra‐
structure, streaming flow control such as Reactive
Streams can provide bidirectional signaling to keep a
series of streaming applications working at their opti‐
mum load.

The amount of data we can receive is usually limited by how much
data we can process and how fast that process needs to be to main‐
tain a stable system. This takes us to the next architectural area of
our interest: processing engines.

Processing Engines
The processing area of our Fast Data architecture is the place where
business logic gets implemented. This is the component or set of
components that implements the streaming transformation logic
specific to our application requirements, relating to the business
goals behind it.

When characterized by the methods used to handle messages,
stream processing engines can be classified into two general groups:

One-at-a-time
These streaming engines process each record individually,
which is optimized for latency at the expense of either higher
system resource consumption or lower throughput when com‐
pared to micro-batch.

Micro-batch
Instead of processing each record as it arrives, micro-batching
engines group messages together following certain criteria.
When the criteria is fulfilled, the batch is closed and sent for

Processing Engines | 3

http://www.reactive-streams.org
http://www.reactive-streams.org

execution, and all the messages in the batch undergo the same
series of transformations.

Processing engines offer an API and programming model whereby
requirements can be translated to executable code. They also pro‐
vide warranties with regards to the data integrity, such as no data
loss or seamless failure recovery. Processing engines implement data
processing semantics that relate how each message is processed by
the engine:

At-most-once
Messages are only ever sent to their destination once. They are
either received successfully or they are not. At-most-once has
the best performance because it forgoes processes such as
acknowledgment of message receipt, write consistency guaran‐
tees, and retries—avoiding the additional overhead and latency
at the expense of potential data loss. If the stream can tolerate
some failure and requires very low latency to process at a high
volume, this may be acceptable.

At-least-once
Messages are sent to their destination. An acknowledgement is
required so the sender knows the message was received. In the
event of failure, the source can retry to send the message. In this
situation, it’s possible to have one or more duplicates at the sink.
Sink systems may be tolerant of this by ensuring that they per‐
sist messages in an idempotent way. This is the most common
compromise between at-most-once and exactly-once semantics.

Exactly-once [processing]
Messages are sent once and only once. The sink processes the
message only once. Messages arrive only in the order they’re
sent. While desirable, this type of transactional delivery requires
additional overhead to achieve, usually at the expense of mes‐
sage throughput.

When we look at how streaming engines process data from a macro
perspective, their three main intrinsic characteristics are scalability,
sustained performance, and resilience:

Scalability
If we have an increase in load, we can add more resources—in
terms of computing power, memory, and storage—to the pro‐
cessing framework to handle the load.

4 | Chapter 1: The Anatomy of Fast Data Applications

Sustained performance
In contrast to batch workloads that go from launch to finish in a
given timeframe, streaming applications need to run 365/24/7.
Without any notice, an unexpected external situation could trig‐
ger a massive increase in the size of data being processed. The
engine needs to deal gracefully with peak loads and deliver con‐
sistent performance over time.

Resilience
In any physical system, failure is a question of when and not if.
In distributed systems, this probability that a machine fails is
multiplied by all the machines that are part of a cluster. Stream‐
ing frameworks offer recovery mechanisms to resume process‐
ing data in a different host in case of failure.

Data Sinks
At this point in the architecture, we have captured the data, pro‐
cessed it in different forms, and now we want to create value with it.
This exchange point is usually implemented by storage subsystems,
such as a (distributed) file system, databases, or (distributed) caches.

For example, we might want to store our raw data as records in “cold
storage,” which is large and cheap, but slow to access. On the other
hand, our dashboards are consulted by people all over the world,
and the data needs to be not only readily accessible, but also replica‐
ted to data centers across the globe. As we can see, our choice of
storage backend for our Fast Data applications is directly related to
the read/write patterns of the specific use cases being implemented.

Data Sinks | 5

CHAPTER 2

Dissecting the SMACK Stack

In Chapter 1, we discussed the high-level characteristics of a Fast
Data platform and applications running on top of it. In each of the
three areas—data sources, processing, and data sinks—trade-offs are
introduced by the various technologies available today. How do we
make the right choices? To answer that question, let’s explore a suc‐
cessful Fast Data application architecture.

The SMACK Stack
The SMACK stack is Spark, Mesos, Akka, Cassandra, and Kafka:

S: Spark
A distributed processing engine capable of batch and streaming
workloads

M: Mesos
A cluster manager, also known as a “scheduler” that abstracts
out resources from applications

A: Akka
A highly concurrent and distributed toolkit for building
message-driven applications

C: Cassandra
A distributed, highly scalable, table-oriented NoSQL database

K: Kafka
A streaming backend based on a distributed commit log

7

The SMACK stack is a distributed, highly scalable platform for
building Fast Data applications based on business-friendly open
source technologies. To learn more about the SMACK stack, Patrick
McFadin’s post is a good starting point.

The SMACK stack became popular because it offered an integration
blueprint for implementing a Fast Data architecture, using open
source components that shared similar scalability characteristics.

Their common denominator is distributed. Distributed partitions of
a Kafka topic could be consumed by Spark tasks running in parallel
in several executor nodes. In turn, Spark could write to Cassandra
nodes, taking into account optimal micro batching based on key
allocation. Akka actors could implement service logic by independ‐
ently retrieving data from Cassandra or pushing new messages to
Kafka by using an event-segregation model.

All these components run reliably on Apache Mesos, which takes
care of scheduling jobs close to the data and ensures proper alloca‐
tion of cluster resources to different applications.

As we have learned, there is no silver bullet. Although the SMACK
stack is great at handling Internet of Things (IoT)/time series and
similar workloads, other alternatives might better meet the chal‐
lenges posed by current machine learning, model-serving, and per‐
sonalization use cases, among others.

Functional Composition of the SMACK Stack
We want to extract that winning formula that makes the SMACK
stack a success in its space. Taking a bird’s-eye view of such architec‐
ture, we can identify the roles that these components play. By
decomposing these roles into functional areas, we come up with the
functional components of a Fast Data platform, shown in Figure 2-1.

8 | Chapter 2: Dissecting the SMACK Stack

https://www.oreilly.com/ideas/the-smack-stack
https://www.oreilly.com/ideas/the-smack-stack

Figure 2-1. The SMACK stack functional components

For this report, we want to focus on the roles that each component is
fulfilling in the architecture and map those roles to our initial
requirements:

Message backbone
How to ingest and distribute the data where we need it?

Compute engines
How to transform raw data into valuable insights?

Storage
How to persist data over time in a location where other applica‐
tions can consume it?

Serving
How to create data-powered applications?

Substrate
Where and how do we run all this—and keep it running?

In the next chapters, we cover these functional areas in detail.

Functional Composition of the SMACK Stack | 9

CHAPTER 3

The Message Backbone

The message backbone is a critical subsystem of a Fast Data platform
that connects all its major components together. If you think about
the message backbone as a nervous system, you can consider events
as the triggers of electrical messages that travel back and forth across
that system. The message backbone is the medium through which
messages are sent and received from various sensors, data reposito‐
ries, and data processors.

So what is an event?
An event can be defined as “a significant change in state.” For exam‐
ple, when a consumer purchases a car, the car’s state changes from
“for sale” to “sold.” A car dealer’s system architecture may treat this
state change as an event whose occurrence can be made known to
other applications within the architecture. From a formal perspec‐
tive, what is produced, published, propagated, detected, or con‐
sumed is a (typically asynchronous) message called the event
notification, and not the event itself, which is the state change that
triggered the message emission. Events do not travel; they just
occur.

—Event-driven architecture, Wikipedia

We can take away two important facts from this definition. The first
is that event messages are generally asynchronous. The message is
sent to signal observers that something has happened, but the source
is not responsible for the way observers react to that information.
This implies that the systems are decoupled from one another,
which is an important property when building distributed systems.

11

https://en.wikipedia.org/wiki/Event-driven_architecture

Second, when the observer receives an event message in a stream,
we are looking at the state of a system in the past. When we continu‐
ously stream messages, we can re-create the source over time or we
can choose to transform that data in some way relative to our spe‐
cific domain of interest.

Understanding Your Messaging Requirements
Understanding best practices for designing your infrastructure and
applications depends on the constraints imposed by your functional
and nonfunctional requirements. To simplify the problem, let’s start
by asking some questions:

Where does data come from, and where is it going?
All data platforms must have data flowing into the system from
a source (ingest) and flowing out to a sink (egress). How do you
ingest data and make it available to the rest of your system?

How fast do you need to react to incoming data?
You want results as soon as possible, but if you clarify the
latency requirements you actually need, then you can adjust
your design and technology choices accordingly.

What are your message delivery semantics?
Can your system tolerate dropped or duplicate messages? Do
you need each and every message exactly once? Be careful, as
this can potentially have a big impact in the throughput of your
system.

How is your data keyed?
How you key messages has a large impact on your technology
choices. You use keys in distributed systems to figure out how to
distribute (partition), the data. We’ll discuss how partitioning
can affect our requirements and performance.

Let’s explore some of the architectural decisions based on your
answers.

Data Ingestion
Data ingestion represents the source of all the messages coming into
your system. Some examples of ingestion sources include the follow‐
ing:

12 | Chapter 3: The Message Backbone

• A user-facing RESTful API that sits at the periphery of our sys‐
tem, responding to HTTP requests originating from our end
users

• The Change Data Capture (CDC) log of a database that records
mutation operations (Create/Update/Delete)

• A filesystem directory from which files are read

The source of messages entering your system is not usually within
your control. Therefore, we should persist messages as soon as pos‐
sible. A robust and simple model is to persist all messages onto an
append-only event log (aka event store or event journal).

The event log model provides maximum versatility to the rest of the
platform. Immutable messages are appended to the log. This allows
us to scale the writing of messages for a few reasons. We no longer
need to use blocking operations to make a write, and we can easily
partition our writes across many physical machines to increase write
throughput. The event log becomes the source of truth for all other
data models (a golden database).

To create derivative data models, we replay the event log and create
an appropriate data model for our use case. If we want to perform
fast analytical queries across multiple entities, we may choose to
build an OLAP cube. If we want to know the latest value of an entity,
we could update an in-memory database. Usually, the event log is
processed immediately and continuously, but that does not prevent
us from also replaying the log less frequently or on demand with
very little impact to our read and write throughput to the event log
itself.

What we’ve just described is the Event Sourcing design pattern,
illustrated in Figure 3-1, which is part of a larger aggregate of design
patterns called Command and Query Responsibility Segregation
(CQRS) and commonly used in event-driven architectures.

Event logs are also central to the Kappa architecture. Kappa is an
evolution of the Lambda architecture, but instead of managing a
batch and fast layer, we implement only a fast layer that uses an
event log to persist messages.

Data Ingestion | 13

https://martinfowler.com/eaaDev/EventSourcing.html
https://martinfowler.com/articles/201701-event-driven.html
http://milinda.pathirage.org/kappa-architecture.com/
http://lambda-architecture.net/

Figure 3-1. Event Sourcing: event messages append to an event log and
are replayed to create different models

Apache Kafka is a Publish/Subscribe (or pub/sub) system based on
the concept of a distributed log. Event messages are captured in the
log in a way that ensures consumers can access them as soon as pos‐
sible while also making them durable by persisting them to disk.
The distributed log implementation enables Kafka to provide the
guarantees of durability and resilience (by persisting to disk), fault
tolerance (by replication), and the replay of messages.

Fast Data, Low Latency
How fast should Fast Data be? We will classify as Fast Data the plat‐
forms that can react to event messages in the millisecond-to-
minutes range.

Apache Kafka is well suited for this range of latency. Kafka made a
fundamental design choice to take advantage of low-level capabili‐
ties of the OS and hardware to be as low latency as possible. Mes‐
sages produced onto a topic are immediately stored in the platform’s
Page Cache, which is a special area of physical system memory used
to optimize disk access. Once a message is in Page Cache, it is
queued to be written to disk and made available to consumers at the
same time. This allows messages passing through a Kafka broker to
be made available nearly instantaneously to downstream consumers
because they’re not copied again to another place in memory or
buffer. This is known as zero-copy transfer within the Kafka broker.

Zero-copy does not preclude the possibility of streaming messages
from an earlier offset that’s no longer in memory, but obviously this
operation will incur a slight delay to initially seek the data on disk

14 | Chapter 3: The Message Backbone

https://kafka.apache.org/
https://kafka.apache.org/documentation/#design
https://en.wikipedia.org/wiki/Page_cache

and make it available to a consumer by bringing it back into Page
Cache. In general, the most significant source of latency when sub‐
scribing to a Kafka topic is usually the network connection between
the client and broker.

Kafka is fast, but other factors can contribute to latency. An impor‐
tant aspect is the choice of delivery guarantees we require for our
application. We discuss this in more detail in the next section.

Message Delivery Semantics
As we saw in Chapter 1, there are three types of message delivery
semantics: at-most-once, at-least-once, and exactly-once. In the
context of the message backbone, these semantics describe how
messages are delivered to a destination when accounting for com‐
mon failure use cases such as network partitions/failures, producer
(source) failure, and consumer (sink, application processor) failure.

Some argue that exactly-once semantics are impossible. The crux of
the argument is that such delivery semantics are impossible to guar‐
antee at the protocol level, but we can fake it at higher levels. Kafka
performs additional operations at the application processing layer
that can fake exactly-once delivery guarantees. So instead of calling
it exactly-once message delivery, let’s expand the definition to
exactly-once processing at the Application layer.

A plausible alternative to exactly-once processing in its most basic
form is at-least-once message delivery with effective idempotency
guarantees on the sink. The following operations are required to
make this work:

• Retry until acknowledgement from sink.
• Idempotent data sources on the receiving side. Persist received

messages to an idempotent data store that will ensure no dupli‐
cates, or implement de-duplication logic at the application layer.

• Enforce that source messages are not processed more than once.

Distributing Messages
A topic represents a type of data. Partitioning messages is the key to
supporting high-volume data streams. A partition is a subset of mes‐
sages in a topic. Partitions are distributed across available Kafka

Message Delivery Semantics | 15

http://bit.ly/2DZsB0u
https://kafka.apache.org/documentation/#intro_topics

brokers, as illustrated in Figure 3-2. How you decide which partition
a message is stored in depends on your requirements.

Figure 3-2. Kafka topic partitioning strategy

If your intention is to simply capture discrete messages and order
does not matter, then it may be acceptable to evenly distribute mes‐
sages across partitions (round-robin), similar to the way an HTTP
load balancer may work. This provides the best performance as mes‐
sages are evenly distributed. A caveat to this approach is that we sac‐
rifice message order: one message may arrive before another, but
because they’re in two different partitions being read at different
rates, an older message might be read first.

Usually, we decide on a partition strategy to control the way mes‐
sages are distributed across partitions, which allows us to maintain
order with respect to a particular key found in the message. Parti‐
tioning by key allows for horizontal scalability while maintaining
guarantees about order.

The hard part is choosing what key to use. It may not be enough to
simply pick a unique identifier, because if we receive an uneven dis‐
tribution of messages based on a certain key, then some partitions
are busier than others, potentially creating a bottleneck. This prob‐
lem is known as a hot partition and generally involves tweaking your
partitioning strategy after you start learning the trends of your mes‐
sages.

16 | Chapter 3: The Message Backbone

CHAPTER 4

Compute Engines

At the center of a Fast Data architecture, we find compute engines.
These engines are in charge of transforming the data flowing into
the system into valuable insights through the application of business
logic encoded in their specific model. As we learned in Chapter 1,
there are two main stream processing paradigms: micro-batch and
one-at-a-time message processing.

Micro-Batch Processing
Micro-batching refers to the method of accumulating input data until
a certain threshold, typically of time, in order to process all those
messages together. Compare it to a bus waiting at a terminal until
departure time. This bus is able to deliver many passengers to their
destination who are sharing the same transport and fuel.

Micro-batching enjoys mechanical sympathy with the network and
storage systems, where it is optimal to send packets of certain sizes
that can be processed all at once.

In the micro-batch department, the leading framework is Apache
Spark. Apache Spark is a general-purpose distributed computing
framework with libraries for machine learning, streaming, and
graph analytics.

Spark provides high-level structured abstractions that let us operate
on the data viewed as records that follow a certain schema. This
concept ties together a high-level API that offers bindings in Scala,
Java, Python, and R with a low-level execution engine that translates

17

http://bit.ly/2f4M04D
https://spark.apache.org/
https://spark.apache.org/

the high-level structure-oriented constructs into query and execu‐
tion plans that can be optimally pushed toward the data sources.

With the recent introduction of Structured Streaming, Spark aims at
unifying the data analytics model for batching and streaming. The
streaming case is implemented as a recurrent application of the dif‐
ferent queries we define on the streaming data, and enriched with
event-time support, windows, different output modes, and triggers
to differentiate the ingest interval from the time that the output is
produced.

One-at-a-Time Processing
One-at-a-time message processing ensures that each message is pro‐
cessed as soon as it arrives in the engine; hence, it delivers results
with minimal delay. At the same time, shipping small messages indi‐
vidually increases the overall overhead of the system and therefore
reduces the number of messages we can process per unit of time.
Following the transportation analogy, one-at-a-time processing is
like a taxi: an individual transport that can take a single passenger to
its destination as fast as possible. (We are imagining here a crazy
NYC driver for the lowest latency possible!)

The leading engine in this category is Apache Flink. Flink is a one-
at-a-time streaming framework, also offering snapshots to isolate
results from machine failure. This comprehensive framework pro‐
vides a lower-level API than Structured Streaming, but it is a com‐
petitive alternative to Spark Streaming when low-latency is the key
focus of interest. Flink presents APIs in Scala and Java.

In this space, we find Kafka Streams and Akka Streams. These are
not frameworks, but libraries that can be used to build data-oriented
applications with a focus on data analytics. Both offer low-latency,
one-at-a-time message processing. Their APIs include projections,
grouping, windows, aggregations, and some forms of joins. While
Kafka Streams comes as a standalone library that can be integrated
into applications, Akka Streams is part of the larger Reactive Plat‐
form with a focus on microservices.

In this category, we also find Apache Beam, which provides a high-
level model for defining parallel processing pipelines. This defini‐
tion is then executed on a runner, the Apache Beam term for an
execution engine. Apache Beam can use Apache Apex, Apache

18 | Chapter 4: Compute Engines

http://bit.ly/2pQrtY2
https://flink.apache.org/
https://kafka.apache.org/documentation/streams/
https://doc.akka.io/docs/akka/2.5/stream/
https://beam.apache.org/

Flink, Apache Gearpump, and the proprietary Google Cloud Data‐
flow.

How to Choose
The choice of a processing engine is largely driven by the through‐
put and latency requirements of the use case at hand. If we need the
lowest response time possible—for example, an industrial sensor
alert, alarms, or an anomaly detection system—then we should look
into the one-at-a-time processing engines.

If, on the other hand, we are implementing a massive ingest and the
data needs to be processed in different data lines to produce, for
example, a registration of every record and aggregated reports, as
well as train a machine learning model, a micro-batch system will be
best suited to handle the workload.

In practice, we observe that this choice is also influenced by the
existing practices in the enterprise. Preferences for specific pro‐
gramming languages and DevOps processes will certainly be influ‐
ential in the selection process. While software development teams
might prefer compiled languages in a stricter CI/CD pipeline, data
science teams are often driven by availability of libraries and indi‐
vidual language preferences (R versus Python) that create challenges
on the operational side.

Luckily, general-purpose distributed processing engines such as
Apache Spark offer bindings in different languages, such as Scala
and Java for the discerning developer, and Python and R for the data
science practitioner.

How to Choose | 19

CHAPTER 5

Storage

In many cases, when we refer to Big Data, we usually relate it to a
large storage infrastructure. In the past decade, when Hadoop-based
architectures became popular, the challenge that they were solving
was twofold: how to reliably store large amounts of data and how to
process it. The Hadoop File System (HDFS), with its concept of
replicated blocks, provided reliability in case of hardware failure,
while MapReduce brought parallel computations to where the data
was stored to remove the overhead of moving data over the net‐
work. That model is based on the premise that the data is already “at
rest” in the storage system.

Storage as the Fast Data Borders
In the particular case of Fast Data architectures, storage usually
demarks the transition boundaries between the Fast Data core and
the traditional applications that might consume the produced data.
The choice of storage technology is driven by the particular require‐
ments of this transition between moving and resting data.

If we need to store the complete data stream as it comes in, and we
need access to each individual record or sequential slices of them,
we need a highly scalable backend with low-latency writes and key-
based query capabilities. As we learned in Chapter 2, Apache Cas‐
sandra is a great choice in such a scenario, as it offers linear
scalability and a limited but powerful query language (Cassandra
Query Language, or CQL).

21

http://bit.ly/2pNWT1I
https://goo.gl/xybH2P
http://cassandra.apache.org/
http://cassandra.apache.org/
http://cassandra.apache.org/doc/latest/cql/

Data could also then be loaded into a traditional data warehouse or
could be used to build a data lake that can support different capabili‐
ties including machine learning, reporting, or ad hoc analysis.

On the other side of the spectrum, we have predigested aggregates
that are requested by a frontend visualization system. Here, we
probably want the full SQL query and indexing support to quickly
locate those records for display. A more classical PostgreSQL,
MySQL, or the commercial Relational Data Base Management Sys‐
tem (RDBMS) counterparts would be a reasonable choice.

Between these two cases is a whole range of options, ranging from
specialized databases (such as InfluxDB for time series or Redis for
fast in-memory lookups), to raw storage (such as on-premises
HDFS) or the cloud storage offerings (Amazon S3, Azure Storage,
Google Cloud Storage, and more).

The Message Backbone as Transition Point
In some cases, it is even possible to use the message backbone as the
data hand-over point. We can exploit the capabilities of a persistent
event log such as Apache Kafka, discussed in Chapter 3, to transition
data between the Fast Data applications and clients with different
runtime characteristics. A blog by Jay Kreps summarizes the partic‐
ular set of use cases for which this is a reasonable option.

When dealing with storage choices, there is no one-size-fits-all.
Every Fast Data application will probably require a specific storage
solution for each integration path with other applications in the
enterprise ecosystem.

22 | Chapter 5: Storage

https://www.confluent.io/blog/okay-store-data-apache-kafka/

CHAPTER 6

Serving

Fast Data applications are built to deliver continuous results and are
consumed by other apps and microservices. Some examples include
real-time dashboards for monitoring business Key Performance
Indicators (KPIs), or an application to enrich the analytical capabili‐
ties of Business Intelligence (BI) software, or an aggregation of mes‐
sages to be queried by a RESTful API. Applications may also apply
machine learning (ML) techniques to the data, such as scoring an
ML model, or even train a model on the fly.

Let’s explore some patterns we can use in a serving layer. We can use
a Big Table–based technology, such as Cassandra or HBase (or, more
traditionally, RDBMS), that is continuously updated. Users then
consume the data with client applications that read from them.

Importing batch data into highly indexed and aggregated data stores
used with analytical data-mining BI tools is a common practice. A
newer trend is to use Streaming SQL to apply analytical transforma‐
tions on live data. Streaming SQL is supported by all major stream
processors including Apache Spark, Apache Flink, and Kafka
Streams.

Finally, it is possible to serve data directly from the message back‐
bone. For example, we can consume messages from a Kafka topic
into a dashboard to build a dynamic, low-latency web application.

23

http://bit.ly/2pIaWoH
https://calcite.apache.org/docs/stream.html

Sharing Stateful Streaming State
When running stateful streaming applications, another possibility is
to share a view of that state directly. This is a relatively new ability in
stream processors. Some options available today are Flink Querya‐
ble State and interactive queries for Kafka Streams, including its
akka-http implementation by Lightbend.

With respect to machine learning, it’s possible to integrate state with
machine learning models to facilitate scoring. For example, see the
Flink Improvement Proposal (FLIP) for Model Serving.

Data-Driven Microservices
Just as our Fast Data applications are data-driven, so are microservi‐
ces. In fact, implementing microservices in this way is not a new
concept. If we drop the fashionable label of “microservices” and
think of them as application services, then we’ve seen this pattern
before with service-oriented architecture (SOA) and enterprise ser‐
vice bus (ESB).

We can link microservices in a similar fashion to using an ESB, but
by using Apache Kafka as the message backbone instead. As an
example, Figure 6-1 illustrates a simplified architecture for an e-
commerce website that relies on Kafka as the messaging infrastruc‐
ture that supports its message exchange model. By using Kafka, we
can to scale our services to support very high volume as well as
easily integrate with stream processors.

Figure 6-1. A simplified e-commerce example of a microservices archi‐
tecture using Kafka as a message bus

24 | Chapter 6: Serving

http://bit.ly/2pKViZO
http://bit.ly/2pKViZO
http://bit.ly/2I6VRER
http://bit.ly/2pLqMji
http://bit.ly/2DYVOst
https://en.wikipedia.org/wiki/Service-oriented_architecture
https://en.wikipedia.org/wiki/Enterprise_service_bus
https://en.wikipedia.org/wiki/Enterprise_service_bus

In microservices, we promote nonblocking operations that reduce
latency and overhead by asynchronously publishing and subscribing
to event messages. A service subscribes to messages to get state
changes to relevant domain entities, and publishes messages to
inform other services of its own state changes. A service becomes
more resilient by encapsulating its own state and becoming the gate‐
way to accessing it. A service can stay online without failing as a
consequence of dependent services going down. In such a case, the
service will continue to function but may not be up-to-date.

Microservices share many of the same properties of a Fast Data
application, to the point that it’s becoming more difficult to distin‐
guish them. Both stream unbounded sets of data in the form of sub‐
scribing to messages or listening for API calls. Both are always
online. Both output something in the form of API responses or new
messages to be subscribed to by yet other microservices or Fast Data
applications.

The main distinction is that a microservice allows for general appli‐
cation development in which we’re free to implement any logic we
want, whereas a Fast Data application is implemented using a stream
processor that may constrain us in various ways. However, Fast Data
apps are becoming more generic as well. Therefore, we conclude
that microservices and Fast Data applications are converging and
often have the same domain requirements, use the same design pat‐
terns, and have the same operational experiences.

State and Microservices
Stream processors have various means to maintain state, but histori‐
cally it’s been challenging to provide a rich stateful experience. We’ve
already mentioned that new libraries are available to share state in
stream processors, but the technology is still in its early days, and
developers are often forced to call out to more general-purpose stor‐
age.

Akka is a great way to model a complex domain and maintain state.
Akka is a toolkit, not a framework, so you can bring components in
when you need them to build highly customized general-purpose
applications that can stream from Kafka (reactive-kafka), expose
HTTP APIs (akka-http), persist to various databases (Akka Persis‐
tence, JDBC, etc.), and much more.

State and Microservices | 25

http://bit.ly/2pPzGvy
https://akka.io/docs/
https://github.com/akka/reactive-kafka
https://doc.akka.io/docs/akka-http/current/index.html

Akka Cluster provides the tools to distribute your state across more
than one machine. It includes advanced cluster-forming algorithms
and conflict-free replicated data types (CRDTs, similar to those used
by various distributed databases), and can even straddle multiple
data centers. Exploring Akka is a huge topic, but it’s essential read‐
ing when you have a complex stateful requirement for your Fast
Data platform.

26 | Chapter 6: Serving

http://bit.ly/2IgACRb

CHAPTER 7

Substrate

Let’s assume we have figured out the major components of our data
architecture, and the pieces start to fit in the puzzle that will serve
the business use case. The next question is, how do we deal with the
infrastructure layer to support those components? Our base require‐
ment is that we need it to run our systems/components in an effi‐
cient and cost-effective manner. We also require that this layer
provides resource management, monitoring, multitenancy, easy
scaling, and other crucial operational capabilities in order to imple‐
ment our architecture on top of it.

As usual in computer science, the solution is to use an additional
abstraction layer. This infrastructure abstraction, let’s call it the sub‐
strate, allows us to run a wide variety of software components while
providing several core operational capabilities. At its core, this layer
is essentially an abstraction on top of hardware resources and oper‐
ating system functions in a distributed setting. And as in an operat‐
ing system, we want this layer to provide a set of basic services to the
application running on top of it:

• Allocate enough resources as needed that are fairly distributed
among applications

• Provide application-level isolation to securely run applications
from different business owners

• Ensure application resilience in case of failure of the underlying
hardware

27

• Expose usage metrics to enable system operators to decide on
capacity planning

• Provide management and monitoring interfaces to integrate its
operational aspects into the rest of the enterprise system

Cluster managers such as Yarn and Mesos emerged to solve this
problem, while container orchestrators such as Kubernetes provide
additional facilities to easily deploy and operate applications.

Deployment Environments for Fast Data Apps
Fast Data applications create high expectations because the idea of
delivering insights or personalized user-experiences almost in real
time is appealing. Systems running these applications have to be
available all the time, need to be scalable, and must maintain a stable
performance while processing large volumes of data at scale. The
latter requires us to rethink our infrastructure and how we deploy
our applications. There is a clear need for a solution that embraces
distributed computing at its core.

Two complementary technology concepts are driving this area: con‐
tainerization of applications and efficient scheduling of resources.
Let’s discuss these two areas in more detail.

Application Containerization
Containerization is a technology that allows running applications in
an isolated manner within a host. We can compare it with virtual
machines (VMs), which have been the leading hardware virtualiza‐
tion technology of the past decade. When compared to VMs, con‐
tainers are said to be lightweight. That is, instead of building upon a
full operating system, containers use Linux isolation technologies:

Linux namespaces
These ensure that each process sees only its own limited view of
the system. This provides isolation from other processes.

Linux control groups (aka c-groups)
These are used to limit the amount of machine resources (CPU,
memory, disk) that a “containerized” process can consume. This
enables fine-grained resource management, such as assigning
0.5 CPUs to a process, and improves overall resource utilization.

28 | Chapter 7: Substrate

http://bit.ly/2pPsIHN
http://mesos.apache.org/
https://kubernetes.io/

Docker, which popularized the container technology, combined
these two ingredients with a portable image format to enable ease of
distribution and reproducible deployments across different hosts.
This facilitates a DevOps practice, in which application developers
can package their software in an image that can run on their laptop
for development and testing, or on production to handle a real load.

Lowering the development-to-deployment barrier increases enter‐
prise agility and its ability to respond to the changing environment.
This means Fast Data applications that are fast not only because of
their streaming data affinity, but also from the development and
deployment perspective, leading to an increased business agility.

Resource Scheduling
Assuming that you have containerized your stateful/stateless apps,
allocating resources (CPU, memory, disk, network) and running
them is the next step. This is where the cluster manager comes into
play.

The approach is to split the concerns of resource allocation, task
scheduling, and execution on nodes. This approach is called two-
level scheduling (Mesos, Yarn to some extent) and allows for applica‐
tions to develop their own scheduling policy by moving scheduling
logic to the application code while resource allocation is done by the
scheduler.

Apache Mesos
Apache Mesos introduces a modular architecture in which applica‐
tions can bring their own scheduler while Mesos takes care of the
resource allocation through a resource offer model. Applications are
offered resources such as CPU or memory, or even specialized capa‐
bilities such as GPUs. By accepting or rejecting these resources,
applications can fulfill their specific needs, while Mesos remains
agnostic of the workloads. This allows Mesos to colocate diverse
workloads, such as databases, computing engines, and microservices
on the same shared infrastructure.

Apache Mesos and its commercially supported distribution, Meso‐
sphere DC/OS, offers a single environment for operating both
microservices and open source data services to support all the com‐
ponents of Fast Data applications. It supports several data services

Resource Scheduling | 29

https://www.docker.com/what-container
http://mesos.apache.org/
https://mesosphere.com/product/
https://mesosphere.com/product/

such as Kafka and HDFS, and data-oriented frameworks such as
Apache Spark and Apache Flink out of the box, through its package
manager. Also, more traditional services can be found listed, includ‐
ing MySQL, PostgreSQL, and others. Services and applications run
on the same environment and benefit from features like a unified
approach for scalability, security, deployment, and monitoring.

Kubernetes
On the container scheduling side, we find Kubernetes, which is the
open source project with the fastest growing popularity. Kubernetes
is focused on container orchestration, and it has a massive commu‐
nity around its open source development, hosted by the Cloud
Native Computing Foundation. Kubernetes has its foundations in
two previous systems for scheduling applications at Google: Borg
and its successor, Omega. As such, it builds upon more than a dec‐
ade of experience in running one of the largest computing loads in
the world. Kubernetes supports several services and key features for
deploying and operating applications. Some features it has are
unique—for example, its federation capability that allows you to
handle multiple clusters across data centers. On the other hand, sup‐
port of different data-centric frameworks on Kubernetes is currently
in the early stages and under active development. In particular,
Apache Spark recently released official support for Kubernetes in its
2.3.0 version.

Kubernetes has its own philosophy, which is strongly influencing the
container orchestration movement.

Last but not least, both Apache Mesos and Kubernetes have been
proven in production, supporting large clusters of thousands of
nodes. Kubernetes can be run as one of the container orchestration
options on top of Mesosphere DC/OS.

Cloud Deployments
So far, we have talked about technologies that are not specific to any
cloud infrastructure or on-premises hardware. While it is possible to
select technologies to implement a platform for Fast Data applica‐
tions by using cloud vendor–specific technologies, staying cloud
neutral has a real benefit. Technologies such as DC/OS and Kuber‐
netes provide the tools you need out of the box to build your Fast

30 | Chapter 7: Substrate

https://kubernetes.io
https://www.cncf.io/
https://www.cncf.io/
http://bit.ly/2IgBXaF
https://goo.gl/9aup1c
https://goo.gl/9aup1c
https://goo.gl/9aup1c
http://bit.ly/2pQ3VTa
http://bit.ly/2pQ3VTa
https://mesosphere.com/blog/kubernetes-dcos/
https://mesosphere.com/blog/kubernetes-dcos/

Data applications while also allowing you to avoid vendor lock-in.
Both technologies can run natively on most existing cloud environ‐
ments. In summary, what you gain is the flexibility to dynamically
run workloads where resources are available.

Cloud Deployments | 31

CHAPTER 8

Conclusions

With Fast Data applications, we understand the domain of data-
intensive applications that aim to continuously process and extract
insights from data as it flows into the system. Fast Data architectures
define the set of integrated components that provide the building
blocks to create, deploy, and operate scalable, performant, and resil‐
ient applications around the clock.

Using the SMACK stack as a blueprint of a successful Fast Data
architecture, we identified the key functional areas and how they
integrate into a consistent platform:

Message backbone
This component is responsible for ingesting and distributing
data among the components within the Fast Data boundaries.
Apache Kafka is the leading project in this area. It delivers a
publish/subscribe model backed by a distributed log abstraction
that provides the guarantees of durability, resilience, fault toler‐
ance, and the ability to replay messages by different consumers.

Compute engines
This is the place where business logic gets applied to the data.
Choosing the right engine is driven by the application require‐
ments, with throughput and latency as key discriminators.
Other influencing factors include the supported languages ver‐
sus the target users and its application domain. Some engines,
including Apache Spark and Apache Flink, can also be used for
general data processing, while Kafka Streams and Akka Streams

33

might be better choices when it comes to integrating microser‐
vices into the Fast Data architecture.

Storage
Storage subsystems form the ideal transition point between the
Fast Data domain and client applications. They act as buffers
between the data in motion delivered by the Fast Data applica‐
tions and external clients with different runtime characteristics.
The choice of a storage system is usually bound to each applica‐
tion and driven by the write and read patterns it presents.

Serving
The serving infrastructure is usually bound to the storage sys‐
tem and typically offers data as a service. It provides a layer of
convergence of Fast Data and microservices, where microservi‐
ces make sense of data and present it to their specific domain.
This could range from HTTP/REST endpoints offering a view
on the data to machine learning model serving, in which the
Fast Data component updates the model information with fresh
data, while the serving layer presents a stable interface to exter‐
nal clients.

Substrate
This is the infrastructure abstraction that provides resources to
services, frameworks, and applications in a secure, monitorable,
and resilient way. Containerization technology creates self-
contained reproducible deployment units. These containers can
be orchestrated by cluster managers to ensure that the applica‐
tions they contain get their required resources, are restarted in
case of failure, or relocated when the underlying hardware fails.
Apache Mesos with the DC/OS distribution and Kubernetes are
the leading container orchestrators.

We are spoiled with choices. Some of them are more obvious than
others. The challenge for software architects is to match their appli‐
cation and business requirements with the range of options available
to make the right decisions at every layer of the architecture.

A successful implementation of the Fast Data architecture will
deliver the business the ability to develop, deploy, and operate appli‐
cations that provide real-time insights and immediate actions,
increasing its competitive advantage and agility to react to specific
market challenges.

34 | Chapter 8: Conclusions

About the Authors
Stavros Kontopoulos is a distributed systems engineer, interested in
data processing, programming, and all aspects of computer science.
He is currently working as a senior software engineer on the Fast
Data Platform team at Lightbend. When not busy with technology,
he enjoys traveling and working out.

Sean Glover is a software architect, engineer, teacher, and mentor.
He’s an engineer on the Fast Data Platform team at Lightbend. Sean
enjoys building streaming data platforms and reactive distributed
systems, and contributing to open source projects.

Gerard Maas is a seasoned software engineer and creative soul with
a particular interest in streaming architectures. He currently con‐
tributes to the engineering of the Fast Data Platform at Lightbend,
where he focuses on the integration of stream processing technolo‐
gies. He is the coauthor of Stream Processing with Apache Spark
(O’Reilly).

	Lightbend
	Copyright
	Table of Contents
	Introduction
	Chapter 1. The Anatomy of Fast Data Applications
	A Basic Application Model
	Streaming Data Sources
	Stream Properties

	Processing Engines
	Data Sinks

	Chapter 2. Dissecting the SMACK Stack
	The SMACK Stack
	Functional Composition of the SMACK Stack

	Chapter 3. The Message Backbone
	Understanding Your Messaging Requirements
	Data Ingestion
	Fast Data, Low Latency
	Message Delivery Semantics
	Distributing Messages

	Chapter 4. Compute Engines
	Micro-Batch Processing
	One-at-a-Time Processing
	How to Choose

	Chapter 5. Storage
	Storage as the Fast Data Borders
	The Message Backbone as Transition Point

	Chapter 6. Serving
	Sharing Stateful Streaming State
	Data-Driven Microservices
	State and Microservices

	Chapter 7. Substrate
	Deployment Environments for Fast Data Apps
	Application Containerization
	Resource Scheduling
	Apache Mesos
	Kubernetes
	Cloud Deployments

	Chapter 8. Conclusions
	About the Authors

