
☰

May 7, 2019

 kafka  kubernetes  strimzi  pipelines

Monitor Kafka Consumer Group Latency with
Kafka Lag Exporter

Sean Glover
Principal Engineer, Lightbend, Inc.

Meet Kafka Lag Exporter

Introducing Kafka Lag Exporter, a tool to make it easy to view consumer group metrics using Kubernetes, Prometheus, and Grafana.
Kafka Lag Exporter can run anywhere, but it provides features to run easily on Kubernetes clusters against Strimzi Kafka clusters
using the Prometheus and Grafana monitoring stack.

Lightbend has spent a lot of time working with Apache Kafka on Kubernetes. We’ve helped many of our clients to run high
throughput, low latency data streaming applications on Lightbend Platform, and understanding consumer group lag is critical to
ensuring low latency processing. This project was started to facilitate an easy way to discover consumer group lag & latency of
Akka Streams and Spark streamlets in Lightbend Pipelines, but more generally it can report consumer group metrics of any Kafka
application that commits offsets back to Kafka.

Before discussing Kafka Lag Exporter’s features, it’s important to have an understanding of Kafka consumer group lag.

What Is Kafka Consumer Group Lag?

Kafka consumer group lag is one of the most important metrics to monitor on a data streaming platform. When consuming
messages from Kafka it is common practice to use a consumer group, which offer a number of features that make it easier to
scale up/out streaming applications. At a high level, they allow us to do the following.

1. Distribute the consumption of messages across 1 or more consumer group members
2. Commit consumed offsets to Kafka

Member applications of a consumer group may commit offsets to Kafka to indicate that they’ve been successfully processed (at-
least-once semantics) or successfully received (at-most-once semantics). The main purpose behind committing is to provide an
easy way for applications to manage their current position in a partition so that if a consumer group member stops for any reason
(error, consumer group rebalance, graceful shutdown) that it can resume from the last committed offset (+1) when it’s active again.

Committing offsets to Kafka is not strictly necessary to maintain consumer group position–you may also choose to store offsets
yourself. Stream processing frameworks like Spark and Flink will perform offset management internally on fault tolerant
distributed block storage (i.e. HDFS, Ceph, etc.) to enable stateful streaming workloads in a fault tolerant manner.

Custom user applications may want to perform their own offset management so they can easily replay a partition’s messages from
different positions in the log. However, committing offsets to Kafka for simple streaming applications, or in addition to managing
offsets yourself, enables an easy way to track the progress of all partitions being consumed in a consumer group.

15 Min Read

https://www.lightbend.com/
https://www.lightbend.com/blog/kafka
https://www.lightbend.com/blog/kubernetes
https://www.lightbend.com/blog/strimzi
https://www.lightbend.com/blog/pipelines
https://github.com/lightbend/kafka-lag-exporter
https://kubernetes.io/
https://strimzi.io/
https://prometheus.io/
https://grafana.com/
https://kafka.apache.org/
https://www.lightbend.com/lightbend-platform
https://www.lightbend.com/lightbend-pipelines-demo

One of the required parameters needed to setup a consumer is a topic subscription. This can be represented as a single topic,
multiple topics, or a set of individual topic partitions, that we want to consume from. The set of partitions described by the topic
subscription is distributed across all the members of a consumer group (generally scaled replicas of the same application). Once
the member receives its assignment it will begin consuming messages that exist in its subset of partitions.

Consumer group lag is the difference between the last produced message (the latest message available) and the last committed
message (the last processed or read message) of a partition. For example, if there are 130 total messages in a partition and we’ve
committed up to 100, then the consumer group lag for that partition is 30 messages/offsets.

There are consequences for having a large consumer group lag; this indicates how far behind your application is in processing up-
to-date information. This depends on the functional requirements for your streaming platform, but in most cases, we want to keep
the lag (aka latency) of our application to be as little as possible. Another consequence is that if lag is always increasing then it’s
inevitable that we will start losing information at some point because the data will be evicted from the queue by Kafka partition
retention policies so that the Kafka broker doesn’t run out of disk.

A caveat of measuring consumer group lag is that it’s inherently imprecise. There’s no way to retrieve both the offset of a
consumer group in a partition and the last produced message in a partition in a single atomic operation. Most consumer group lag
monitoring software will perform the metadata requests in parallel (Kafka Lag Exporter does this), or shortly one after another, in
order to get the best snapshot of the current state. Adding to this imprecision is the fact that committing an offset by the
consumer introduces latency as well. Therefore the currently measured consumer group offset might not be the consumer’s actual
current position. Nonetheless, measuring consumer group lag even with these caveats is still a valuable metric to monitor, but you
should be aware of its fidelity and use it in conjunction with other information before drawing a conclusion about the health of your
consumer group.

Watch: Running Kafka on Kubernetes with Strimzi

Introducing The Kafka Lag Exporter

Kafka Lag Exporter is an Akka Typed application written in Scala. Kafka Lag Exporter will poll Kafka for consumer group
information and transform it into Prometheus metrics. A Prometheus server will then scrape and store these metrics so that they
can be made available to any downstream metrics monitoring software, such as for the purposes of alerting of dashboarding.
 Plotting consumer group lag is important to help us our tune our applications and infrastructure.

https://www.lightbend.com/blog/running-kafka-on-kubernetes-with-strimzi-for-real-time-streaming-applications
https://doc.akka.io/docs/akka/current/typed/index.html
https://www.scala-lang.org/

There are many consumer group lag projects available in the Kafka ecosystem. Kafka Lag Exporter has several features that make
it stand out from other projects.

Prometheus metrics
Estimate consumer group lag in time
Native Kubernetes Support with Helm
Auto-discovery of Strimzi Kafka clusters on Kubernetes

Prometheus Metrics

Prometheus is emerging as the de facto standard way to represent metrics in a modern cross-platform manner. Kafka Lag Exporter
exposes several metrics as an HTTP endpoint that can be readily scraped by Prometheus. When installed using Helm and when
enabling the Kubernetes pod self-discovery features within Prometheus server, Prometheus server will automatically detect the
HTTP endpoint and scrape its data.

kafka_consumergroup_group_offset

Labels: cluster_name, group, topic, partition, state, is_simple_consumer, member_host, consumer_id, client_id

The offset of the last consumed offset for this partition in this topic partition for this group.

kafka_consumergroup_group_lag

Labels: cluster_name, group, topic, partition, state, is_simple_consumer, member_host, consumer_id, client_id

The difference between the last produced offset and the last consumed offset for this partition in this topic partition for this group.

kafka_consumergroup_group_lag_seconds

Labels: cluster_name, group, topic, partition, state, is_simple_consumer, member_host, consumer_id, client_id

The estimated lag in seconds. This metric correlates with lag in offsets. For more information on how this is calculated read the
Estimate consumer group lag in time section below.

kafka_consumergroup_group_max_lag

Labels: cluster_name, group, state, is_simple_consumer

The highest (maximum) lag in offsets for a given consumer group.

kafka_consumergroup_group_max_lag_seconds

Labels: cluster_name, group, state, is_simple_consumer

The highest (maximum) lag in time for a given consumer group.

kafka_partition_latest_offset

Labels: cluster_name, topic, partition

The latest offset available for topic partition. Kafka Lag Exporter will calculate a set of partitions for all consumer groups available
and then poll for the last produced offset. The last produced offset is used in the calculation of other metrics provided, so it is
exported for informational purposes. For example, the accompanying Grafana dashboard makes use of it to visualize the last
produced offset and the last consumed offset in certain panels.

Labels

Each metric may include the following labels when reported.

cluster_name - Either the statically defined Kafka cluster name, or the metadata.name of the Strimzi Kafka cluster that was
discovered with the Strimzi auto-discovery feature.
topic - The Kafka topic.
partition - The Kafka partition.

https://prometheus.io/

group - The Kafka consumer group.id.

The rest of the labels are passed along from the consumer group metadata requests.

state - The state of the consumer group when the group data was polled.
is_simple_consumer - Is this group using the [old] simple consumer API.
member_host - The hostname or IP of the machine or container running the consumer group member that is assigned this

partition.
client_id - The id of the consumer group member. This is usually generated automatically by the group coordinator.
consumer_id - The globally unique id of the consumer group member. This is usually a combination of the client_id and a GUID

generated by the group coordinator.

Prometheus server may add additional labels based on your configuration. For example, Kubernetes pod information about the
Kafka Lag Exporter pod where the metrics were scraped from.

Estimate Consumer Group Time Lag

One of Kafka Lag Exporter’s more unique features is its ability to estimate the length of time that a consumer group is behind the
last produced value for a particular partition, time lag. Offset lag is useful to indicate that the consumer group is lagging, but it
doesn’t provide a sense of the actual latency of the consuming application.

For example, a topic with two consumer groups may have different lag characteristics. Application A is a consumer which performs
CPU intensive (and slow) business logic on each message it receives. It’s distributed across many consumer group members to
handle the high load, but since its processing throughput is slower it takes longer to process each message per partition.
Meanwhile, Application B is a consumer which performs a simple ETL operation to land streaming data in another system, such as
an HDFS data lake. It may have similar offset lag to Application A, but because it has a higher processing throughput its lag in time
may be significantly less.

It’s easier to build monitoring alerts using a time lag measurement than an offset lag measurement because latency is best
described in requirements as a unit of time.

There are several ways to calculate time lag. The easiest way would be to parse the message timestamp and subtract it from the
current time. However, this requires us to actually poll for messages in each partition that we wish to calculate time lag for. We
must download the message payload and parse this information out of a ConsumerRecord . This is an expensive operation to
perform and will likely not scale well in the general use case where messages can be of any size (though less than 1MB, unless
default broker config is changed) and the number of partitions for any given topic could range into to thousands. However, it would
be an interesting feature to explore in the future. It would also be possible to instrument the Kafka consuming application itself to
report this metric since it can readily sample messages it's already consuming for their timestamp property and perform the
calculation, but this requires each Kafka consuming application to opt into this implementation in order for it to be monitored.
Another way to determine time lag is to estimate it based on consumer group lag information we already have available.

Kafka Lag Exporter estimates time lag by either interpolation or extrapolation of the timestamp of when the last consumed offset
was first produced. We begin by retrieving the source data from Kafka. We poll the last produced offset for all partitions in all
consumer groups and store the offset (x) and current time (y) as a coordinate in a table (the interpolation table) for each partition.
This information is retrieved as a metadata call using the KafkaConsumer endOffsets API and does not require us to actually
poll for messages. The Kafka Consumer Group coordinator will return the last produced offsets for all the partitions we are
subscribed to (the set of all partitions of all consumer groups). Similarly, we use the Kafka AdminClient ’s
listConsumerGroupOffsets API to poll for consumer group metadata from all consumer groups to get the last consumed offset

for each partition in a consumer group.

Once we’ve built up an interpolation table of at least two values we can begin estimating time lag by performing the following
operations (some edge cases are omitted for clarity) for each last consumed offset of each partition.

1. Lookup interpolation table for a consumer group partition
2. Find two points within the table that contain the last consumed offset

a. If there are no two points that contain the last consumed offset then use the first and last points as input to the interpolation
formula. This is the extrapolation use case.

3. Interpolate inside (or extrapolate outside) the two points from the table we picked to predict a timestamp for when the last
consumed message was first produced.

4. Take the difference of the time of the last consumed offset (~ the current time) and the predicted timestamp to find the time lag.

Below you will find a diagram that demonstrates the interpolation use case.

The extrapolation use case uses different points in the interpolation table (the first and last points), but the calculation is the same.

Interpolation is always desirable because we can be more assured that the prediction will be more accurate because we’re plotting
a point within two points of our existing dataset. Extrapolation will always be less accurate because we’re predicting points that
may be a fair distance away from our dataset.

This feature is based on a similar feature from a monitoring software known as OpsClarity (since acquired by Lightbend), where it
was described as queue latency.

Native Kubernetes Support with Helm

Akka Platform uses Kubernetes (more specifically, Red Hat OpenShift) to run supported infrastructure for reactive and data
streaming platforms. The Kafka Lag Exporter repository hosts a Helm Chart to easily deploy the Kafka Lag Exporter into existing
Kubernetes and OpenShift clusters. The Helm Chart may be installed directly by cloning the project’s GitHub repository and
checking out the appropriate release tag, or by referencing the tarball artifact from the appropriate GitHub release.

Helm will deploy all the necessary Kubernetes resources required to run Kafka Lag Exporter, as well as provide a nice configuration
API to configure the application and its deployment.

For example, here is how you install the Kafka Lag Exporter in one command:

helm install \
https://github.com/lightbend/kafka-lag-exporter/releases/download/v0.4.0/kafka-lag-exporter-0.4.0.tgz

To learn more about specific options that can be overridden see the values.yaml file in the project repository.

Auto-Discovery of Strimzi Kafka Clusters

Strimzi represents the most stable Apache Kafka on Kubenetes project available today. It’s closest rival project would be the
Confluent Operator from Confluent itself, but this is commercial in nature and makes it difficult to make a comparison. The Strimzi
project is led by a team of Software Engineers in Red Hat IoT & Messaging department. It’s part of a broader commercial offering
from Red Hat known as Red Hat AMQ as well as the Lightbend Platform. Kafka Lag Exporter uses Kubernetes to automatically
watch for Strimzi Kafka resources which can be used to automatically configure Kafka connection information in Kafka Lag
Exporter.

To use this feature, simply enable the Strimzi watcher when installing or updating the Kafka Lag Exporter Helm Chart. You must
have Strimzi installed before you can use this feature.

helm install \
https://github.com/lightbend/kafka-lag-exporter/releases/download/v0.4.0/kafka-lag-exporter-0.4.0.tgz \
--name kafka-lag-exporter \
--namespace kafka-lag-exporter \
--set watchers.strimzi=true

Watch: Running Kafka on Kubernetes with Strimzi

How To Handle Consumer Group Lag

Increasing consumer group lag is a symptom of a common problem in data streaming systems known as the “fast producer, slow
consumer” problem. In this scenario, an upstream producer is creating messages faster than a downstream consumer can process
them. In most practical situations, if the consumers can never catch up then something in your infrastructure will fail unless you
take action to reduce the lag. There are several strategies to do this.

Signal upstream to slow down (back-pressure)
Buffer messages
Scale out more consumers
Drop messages

https://github.com/lightbend/kafka-lag-exporter/blob/master/charts/kafka-lag-exporter/values.yaml
https://www.lightbend.com/blog/running-kafka-on-kubernetes-with-strimzi-for-real-time-streaming-applications

Back-pressuring is Lightbend’s common prescription. This is a terrific solution when you have control over upstream producers of
data to prevent fast producers from overloading downstream consumers, causing a cascading failure. Back-pressure is natively
supported in Akka and Akka Streams. When using Kafka there is no way for a consumer to back-pressure upstream using provided
Kafka features. If you’re using Kafka within your infrastructure then you don’t want to back-pressure through Kafka.

Back-pressure is intentionally not an option in Kafka. In many high throughput streaming use cases, such as IoT, we can’t, or don’t
want to, tell the upstream to slow down their production rate. This may be because their production rate is outside of our control, as
in the case of a customer hardware device, or a 3rd party data source. This is why Kafka is commonly used on the edge of data
streaming infrastructure, so that it may buffer messages quickly and in a persistent and fault tolerant way and provide consuming
applications with an opportunity to catch up (reduce lag) by reading at a rate that’s comfortable to them. Using Kafka as a big
buffer prevents translating potentially spikey load to our internal infrastructure. You can think of this use case as a data streaming
shock absorber implemented with Kafka.

Sometimes simply buffering is not enough and we need to do something about the situation before it’s too late. The Kafka solution
to this problem is either to increase the size of the buffer (increase broker retention policies, add more disk), or to add additional
processing power to our consumer group by adding more members. Scaling out members allows consumer groups to redistribute
partitions over those additional members, which should result in a higher aggregate processing throughput and allow the consumer
group to eventually catch up to the latest produced offsets for partitions they’re subscribed to.

Other solutions to the “fast producer, slow consumer” problem include dropping messages by some pattern. For example, drop
every n messages or some other criteria. Or drop all messages until we catch up. However, if dropping messages is not acceptable
and if lag persists over a long period of time, or worse, it is steadily increasing over time then increasing the buffer or scaling
consumer groups is your only alternative.

Auto-Scaling

When monitoring consumer group lag we can handle increasing lag & latency situations manually by regularly reviewing monitoring
dashboards, or setting up alerts based on certain thresholds, such as a growth model based on offset or time lag. Or we can be
more proactive and “close the loop” by taking automated action. For example, in Kubernetes we can react to lag by automatically
modifying a Kubernetes Deployment associated with that consumer group and patch its replicas field to add or remove
members to the consumer group.

Monitoring

Kafka Lag Exporter is designed for Prometheus. As a consequence, we can leverage the whole ecosystem of Prometheus-
supported monitoring software to setup a monitoring solution. Grafana is a very mature dashboarding solution that lets us build a
wide range of monitoring user experiences. The Kafka Lag Exporter bundles an example Grafana dashboard that provides several
different ways to visualize the metrics.

The dashboard is split into four sections. The first three sections are relevant to consumer group lag and the fourth are internal
JVM metrics reported by Kafka Lag Exporter itself.

The first consumer group sections include an aggregate view of all consumer groups, and the second two sections include one
panel each for each consumer group, showing the maximum time lag overlaid with other information.

All Consumer Group Lag

One of four panels that aggregate all (or top) lag across all consumer groups. The example below shows the
kafka_consumergroup_group_max_lag_seconds metric for all consumer groups.

https://grafana.com/
https://github.com/lightbend/kafka-lag-exporter/blob/master/grafana/Kafka_Lag_Exporter_Dashboard.json

Max Consumer Group Time Lag Over Offset Lag

The example below shows time lag on the left Y axis and offset lag on the right Y axis for a single consumer group.

Max Consumer Group Time Lag Over Summed Offsets

The same consumer group as before with time lag on the left Y axis and a sum of last produced and last committed offsets across
all partitions in the consumer group. This is useful to see lag relative to partition subscription depth.

Release

Kafka Lag Exporter 0.4.0 was open sourced and released publicly in tandem with this blog post. Try installing the Helm Chart into
your Kubernetes cluster to gain new insights into the latency of your consumer groups. We welcome bug reports and contributions.
For more information on how to contribute fork the GitHub repository and consult its internal documentation.

Learn more about working with Kafka and Kubernetes in Sean's webinar Running Kafka On Kubernetes With Strimzi For Real-Time
Streaming Applications.

https://github.com/lightbend/kafka-lag-exporter
http://www.lightbend.com/blog/running-kafka-on-kubernetes-with-strimzi-for-real-time-streaming-applications
http://www.lightbend.com/blog/running-kafka-on-kubernetes-with-strimzi-for-real-time-streaming-applications

WATCH THE RECORDING

Author

Sean Glover

Principal Engineer, Lightbend, Inc.

Twitter: @seg1o GitHub: seglo

Sean is a Principal Engineer on the Akka team at Lightbend where he maintains the open source Alpakka and Alpakka
Kafka projects. Sean enjoys building data streaming platforms, reactive distributed systems, and working within the open
source community.

Akka

Overview

Developers

Services

Pricing

Compliance

Security

License FAQ

Akka Insights

Kalix

Overview

Deep Dive

Developers

Pricing

Resources

Events

Search..

https://www.lightbend.com/blog/running-kafka-on-kubernetes-with-strimzi-for-real-time-streaming-applications
https://twitter.com/seg1o
https://github.com/seglo
https://www.lightbend.com/akka
https://www.lightbend.com/akka/developers
https://www.lightbend.com/akka/services
https://www.lightbend.com/akka/pricing
https://www.lightbend.com/akka/compliance
https://www.lightbend.com/akka/security
https://www.lightbend.com/akka/license-faq
https://www.lightbend.com/akka-insights
https://www.kalix.io/
https://www.kalix.io/deep-dive
https://www.kalix.io/developer
https://www.kalix.io/pricing
https://www.kalix.io/resources
https://www.kalix.io/events

Resources
Resources

Blog

All Other Resources

Case Studies

Akkademy

Akka Discussion Forum

The Lightbend Monthly Newsletter

Why Reactive Microservices

The Lightbend Monthly Newsletter

Company

About Us

Leadership

Media & Press

Careers

Partners

Pekko

Support

Contact Us

Customer Support

LOGIN

Follow Us

© 2011 - 2024, Lightbend, Inc. All rights reserved. | Licenses | Terms | Privacy Policy | Cookie Listing | Do Not Sell My Personal Information | RSS

https://www.lightbend.com/akka/resources
https://www.lightbend.com/blog
https://www.lightbend.com/akka/resources
https://www.lightbend.com/case-studies
https://akkademy.akka.io/
https://discuss.lightbend.com/c/akka/5
https://www.lightbend.com/newsletter
https://www.lightbend.com/why-reactive-microservices
https://www.lightbend.com/newsletter?utm_source=seanglover.com&utm_medium=%28referral%29&utm_campaign=%28referral%29
https://www.lightbend.com/about-lightbend
https://www.lightbend.com/about-lightbend#leadership
https://www.lightbend.com/company/news
https://www.lightbend.com/company/careers
https://www.lightbend.com/partners
https://www.lightbend.com/technical-support-for-apache-pekko
https://portal.lightbend.com/
https://www.lightbend.com/contact
https://portal.lightbend.com/
https://www.linkedin.com/company/lightbend-inc-
https://twitter.com/lightbend
https://www.twitch.tv/lightbendtwitch
https://www.facebook.com/lightbendOfficial
http://www.youtube.com/c/Lightbend-TV?sub_confirmation=1
https://www.lightbend.com/blog/rss.xml
https://github.com/lightbend
https://www.lightbend.com/legal/licenses
https://www.lightbend.com/legal/terms
https://www.lightbend.com/legal/privacy
https://www.lightbend.com/legal/cookie
https://www.lightbend.com/blog/rss.xml

