
Microservice Design
Patterns & Lagom

Sean Glover, Senior Consultant, Lightbend
@seg1o

Once upon a time there was the Monolith..

Monoliths

● Easy to get started, hard to
maintain

● Tangled responsibilities, lead to
infrequent, “big-bang” deployments

● Upgrades are painful
● Small changes become harder to

do over time
● App lifetimes months to forever!

Microservices to the rescue!

Microservices

● Services/concerns split into independent
services

● Asynchronous communication (pub/sub)
● Manages their own data

Microservice drawbacks (surprises?)

● Aren’t really drawbacks, just new stuff to
people used to monoliths

● Longer latency between services
● Deployment operations: orchestration,

automation, etc.

Building Reactive Systems

The Reactive Manifesto

http://www.reactivemanifesto.org/
http://www.reactivemanifesto.org/

Microservice Design Patterns

“Microservices-Based Architecture is a simple
concept: it advocates creating a system from a
collection of small, isolated services, each of
which owns their data, and is independently
isolated, scalable and resilient to failure.”

- Jonas Bonér, CTO Lightbend

Book link

https://info.lightbend.com/COLL-20XX-Reactive-Microservices-Architecture-RES-LP.html
https://info.lightbend.com/COLL-20XX-Reactive-Microservices-Architecture-RES-LP.html

Properties of a microservice
Based on the definition of microservice from the previous slide, let’s iterate over
the properties of such a microservice.

● Isolation - Decoupling, failure bulk heading, scale independently
● Acting autonomously - Have enough information to make decisions

independently
● Do one thing - A core or sub domain, as defined in DDD
● Own your own state - Share nothing architecture, including data, at the

sacrifice of normalization and single source of truth.
● Embrace async messaging

Isolation
● The impact on initial design, something to be considered from day one.
● Failure isolation - bulk heading
● Scaling out

Acting Autonomously
● Don’t create a distributed monolith - Whale analogy
● Isolation is a pre-requisite
● Resiliency when other services are down - If dependencies are unavailable,

what do we do?
● Independently make decisions

Do one thing
● Do one thing and do it really well
● The same idea as the Unix philosophy

of building standalone tools for system
programming. Single Responsibility
Principle from SOLID.

● How big is a “microservice”?
● Modeling your services with DDD.

Bounded context and service could be
1:1

● Scale your dev teams the same way!

Source: Bounded-context by Martin Fowler

http://martinfowler.com/bliki/BoundedContext.html

Own your state exclusively
● Each service has state it has to deal with
● Don’t share state in databases. This delegates the

problem of keeping state to a 3rd party which services
can corrupt.

● Each service should manage its own state and
underlying persistence

● State that needs to be shared should be pushed or
pulled to other services

● Duplicate data is OK

Embrace async message passing
● Synchronous request/response message passing

can cause bottlenecks. Blocking is bad!
● Increases throughput
● Fire and forget. Responsibility of sender to detect

and deal with failure.

Lagom - [lah-gome]

Adequate, sufficient, just right

Why Lagom?
● Opinionated
● Developer experience matters!

○ No brittle script to run your services
○ Inter-service communication just works
○ Services are automatically reloaded on code change

● Takes you through to production deployment

● sbt build tool (developer environment)
● Play 2.5
● Akka 2.4 (clustering, streams, persistence)
● Cassandra (default data store)
● Jackson (JSON serialization)
● Guice (DI)

Under the hood

your-lagom-system → Project root
 └ helloworld-api → helloworld api project
 └ helloworld-impl → helloworld implementation
project
 └ project → sbt configuration files
 └ plugins.sbt → sbt plugins
 └ build.sbt → Your project build file

Anatomy of a Lagom project

Each service definition is split into two sbt projects: api & impl

Demo time

Service API

Service definition

// this source is placed in your api project

trait HelloService extends Service {

 override def descriptor(): Descriptor = {

 named("helloservice").withCalls(

 namedCall("/hello", sayHello _)

)

 }

 def sayHello(): ServiceCall[String, String]

}

Strict Messages

Strict messages are fully buffered into memory

override def descriptor(): Descriptor = {

 named("helloservice").withCalls(

 namedCall("/hello", sayHello _)

)

}

def sayHello(): ServiceCall[String, String]

Streamed Messages
override def descriptor(): Descriptor = {

 named("clock").withCalls(

 pathCall("/tick/:interval", tick _)

)

}

def tick(interval: Int): ServiceCall[String, Source[String, _]]

● A streamed message is of type Source (an Akka streams API)
● Back-pressured, asynchronous handling of messages
● WebSocket is the selected transport protocol

Remember the Service definition?

// this source is placed in your api project

trait HelloService extends Service {

 override def descriptor(): Descriptor = {

 named("helloservice").withCalls(

 namedCall(sayHello _)

)

 }

 def sayHello(): ServiceCall[String, String]

}

Here is the Service implementation

// this source is placed in your implementation project

class HelloServiceImpl extends HelloService {

 override def sayHello(): ServiceCall[String, String] = {

 name => Future.successful(s"Hello, $name!")

 }

}

Inter-service communication

class MyServiceImpl @Inject()(helloService: HelloService)

 (implicit ec: ExecutionContext) extends MyService {

 override def sayHelloLagom(): ServiceCall[NotUsed, String] = unused => {

 val response = helloService.sayHello().invoke("Lagom")

 response.map(answer => s"Hello service said: $answer")

 }

}

Persistence API

● Each service owns its data
○ Only the service has direct access to the DB

● We advocate the use of Event Sourcing (ES) and CQRS
○ ES: Capture all state’s changes as events
○ CQRS: separate models for write and read

Principles

Benefits of Event Sourcing/CQRS
● Allows you to time travel
● Audit log
● Future business opportunities
● No need for ORM
● No database migration script, ever!
● Performance & Scalability
● Testability & Debuggability

Event Sourcing: Write Side
● Create your own Command and Event classes
● Subclass PersistentEntity

○ Define Command and Event handlers
○ Can be accessed from anywhere in the cluster
○ (corresponds to an Aggregate Root in DDD)

Event Sourcing: Read Side
● Tightly integrated with Cassandra
● Create the query tables:

○ Subclass CassandraReadSideProcessor
○ Consumes events produced by the PersistentEntity and updates tables in Cassandra

optimized for queries

● Retrieving data: Cassandra Query Language
○ e.g., SELECT id, title FROM postsummary

Lagom Supports

● Java API!
● Maven support
● Message broker integration
● Scala API
● Support for other cluster orchestration tools

○ Want Kubernetes support? Contribute! https://github.com/huntc/kubernetes-lib

● Coming soon:
○ Support for writing integration tests
○ Swagger integration

Lagom Resources
● Try Lagom yourself

○ https://lightbend.com/lagom
● Using Scala with Lagom

○ https://github.com/dotta/activator-lagom-scala-chirper/releases/tag/v02_s
caladays_berlin_2016

● Lagom on Github
○ https://github.com/lagom/lagom

● Read Jonas Bonér's free ebook Reactive Services Architecture
○ https://lightbend.com/reactive-microservices-architecture

● Great presentation by Greg Young on why you should use ES
○ https://www.youtube.com/watch?v=JHGkaShoyNs

https://lightbend.com/lagom
https://lightbend.com/lagom
https://github.com/dotta/activator-lagom-scala-chirper/releases/tag/v02_scaladays_berlin_2016
https://github.com/dotta/activator-lagom-scala-chirper/releases/tag/v02_scaladays_berlin_2016
https://github.com/dotta/activator-lagom-scala-chirper/releases/tag/v02_scaladays_berlin_2016
https://github.com/lagom/lagom
https://github.com/lagom/lagom
https://lightbend.com/reactive-microservices-architecture
https://lightbend.com/reactive-microservices-architecture
https://www.youtube.com/watch?v=JHGkaShoyNs
https://www.youtube.com/watch?v=JHGkaShoyNs

That’s it!

Questions?
@seg1o

