Microservice Design
Patterns & Lagom

Sean Glover, Senior Consultant, Lightbend
@segio

Once upon a time there was the Monolith..

Load Balancers

Search Rig wise Cart Orhars
Rt’cmm.u\ﬂq}]m Wik List | AAMmin |
WAR o .EAR

App Container

) ExTer hﬁ)l’lj © ©
, Sevvites SQ\- jCa_c.ke_

Monoliths

o Easy to get started, hard to Load Balances
maintain
e Tangled responsibilities, lead to
infrequent, “big-bang” deployments Search PN Conra Dedars
e Upgrades are painful
e Small changes become harder to Recammendofims| [Wish Cost | [Adun]
do over time MAR o EAR
e App lifetimes months to forever! Ose Container
PP
C B L, S (D
L_ J SQL Cache

Microservices to the rescue!

=

A
=\ p
J

| '::__} QT Wa

Serv (Ce_

SerJice

Microservices

e Services/concerns split into independent

services
e Asynchronous communication (pub/sub)

e Manages their own data

l | events

Servia |$| Service | <—
even <
T svisbe (NSRRI <

evants

Microservice drawbacks (surprises?)

Aren’t really drawbacks, just new stuff to
people used to monoliths
Longer latency between services

Deployment operations: orchestration,
automation, etc.

A

Building Reactive Systems

/ A \
\

The Reactive Manifesto

http://www.reactivemanifesto.org/
http://www.reactivemanifesto.org/

Microservice Design Patterns

O'REILLY*

Reactive

“Microservices-Based Architecture is a simple M .
concept: it advocates creating a system from a ICTOSErVICES

collection of small, isolated services, each of ArChlteCture
which owns their data, and is independently Design Principles for Distributed Systems
isolated, scalable and resilient to failure.”

Jonas Bonér, CTO Lightbend

Book link

Jonas Bonér

https://info.lightbend.com/COLL-20XX-Reactive-Microservices-Architecture-RES-LP.html
https://info.lightbend.com/COLL-20XX-Reactive-Microservices-Architecture-RES-LP.html

Properties of a microservice

Based on the definition of microservice from the previous slide, let’s iterate over
the properties of such a microservice.

e [solation - Decoupling, failure bulk heading, scale independently

e Acting autonomously - Have enough information to make decisions
independently

e Do one thing - A core or sub domain, as defined in DDD

e Own your own state - Share nothing architecture, including data, at the
sacrifice of normalization and single source of truth.

e Embrace async messaging

Isolation

e The impact on initial design, something to be considered from day one.
e Failure isolation - bulk heading
e Scaling out

1

TTRITLE

- @@

Figure 2-1. Using bulkheads in ship construction —
Cache.

Figure 2-2. Bounded contexis of Microservices

Acting Autonomously

e Don’t create a distributed monolith - Whale analogy

e |[solation is a pre-requisite

e Resiliency when other services are down - If dependencies are unavailable,
what do we do?

e Independently make decisions

Do one thing

— CR—

e Do one thing and do it really well _
e The same idea as the Unix philosophy - E]_msa,mex? N

A B R T A
- -

uuuuuuuu . Support Context

of building standalone tools for system —
programming. Single Responsibility
Principle from SOLID.

e How big is a “microservice”?

e Modeling your services with DDD.
Bounded context and service could be
1:1

e Scale your dev teams the same way!

Source: Bounded-context by Martin Fowler

http://martinfowler.com/bliki/BoundedContext.html

Own your state exclusively

e Each service has state it has to deal with

e Don’t share state in databases. This delegates the
problem of keeping state to a 3rd party which services
can corrupt.

e Each service should manage its own state and
underlying persistence

e State that needs to be shared should be pushed or
pulled to other services

e Duplicate data is OK

@ @
O
O a2 (e
I : 1\._./' I\,__ _,/’I
. ‘ -
I B STILL A MOPERITN,

Embrace async message passing

e Synchronous request/response message passing
can cause bottlenecks. Blocking is bad!

e Increases throughput
e Fire and forget. Responsibility of sender to detect

and deal with failure.

5
’.'
s

g
S

(5] || {
ISR

[EL

CALS mm;mmmmm
BLOCKING 000y AFCAUSE THE THREADR /5 BUSY BUT NOT WOBCING.

]

BD‘...—’

- ENn 7
- |¢rj
2l /

‘ﬁlﬂ% m-ﬁﬂ-‘t REQUEST AT BETLRN MMGCATELY.
BECAUSE THE RESPONSE 5 RETURNED LATERY

Lagom - [lah-gome]

Adequate, sufficient, just right

Why Lagom?

e Opinionated

e Developer experience matters!
o No brittle script to run your services
o Inter-service communication just works
o Services are automatically reloaded on code change

e Takes you through to production deployment

Under the hood

e sbt build tool (developer environment)
e Play 2.5

e Akka 2.4 (clustering, streams, persistence)
e (Cassandra (default data store)

e Jackson (JSON serialization)

e Guice (DI)

Anatomy of a Lagom project

Each service definition is split into two sbt projects: api & impl

your-lagom-system — Project root

! project — sbt configuration files
L plugins.sbt — sbt plugins

L build.sbt — Your project build file

Demo time

Service API

Service definition

/ this source is placed in your api project

trait HelloService extends Service {
override def descriptor(): Descriptor = {

named("helloservice").withCalls(

namedCall("/hello", sayHello)

def sayHello(): ServiceCall[String, String]

Strict Messages

override def descriptor(): Descriptor = {
named("helloservice").withCalls(
namedCall("/hello", sayHello)

def sayHello(): ServiceCall[String, String]

Strict messages are fully buffered into memory

Streamed Messages

override def descriptor(): Descriptor = {
named("clock").withCalls(
pathCall("/tick/:interval”, tick _)

}
def tick(interval: Int): ServiceCall[String, Source[String, _]]

WebSocket

Remember the Service definition?

/ this source is placed in your api project

trait HelloService extends Service {
override def descriptor(): Descriptor = {
named("helloservice").withCalls(
namedCall(sayHello)

def sayHello(): ServiceCall[String, String]

Here is the Service implementation

// this source is placed in your implementation project
class HelloServiceImpl extends HelloService {
override def sayHello(): ServiceCall[String, String] = {

name => Future.successful(s"Hello, $name!")

Inter-service communication

class MyServiceImpl @Inject()(helloService: HelloService)

(implicit ec: ExecutionContext) extends MyService {

override def sayHellolLagom(): ServiceCall[NotUsed, String] = unused => {
val response = helloService.sayHello().invoke("Lagom")

response.map(answer => s"Hello service said: $answer")

Persistence API

Principles

e [Each service owns its data
o Only the service has direct access to the DB

e \We advocate the use of Event Sourcing (ES) and CQRS

o ES: Capture all state’s changes as events
o CQRS: separate models for write and read

Benefits of Event Sourcing/CQRS

Allows you to time travel (H H d
Audit log

Future business opportunities

No need forORM o W
No database migration script, ever!

Performance & Scalability

Testability & Debuggability (){){

Event Sourcing: Write Side

e Create your own Command and Event classes

e Subclass PersistentEntity
o Define Command and Event handlers
o Can be accessed from anywhere in the cluster
o (corresponds to an Aggregate Root in DDD)

Event Sourcing: Read Side

e Tightly integrated with Cassandra

e Create the query tables:
o Subclass CassandraReadSideProcessor
o Consumes events produced by the PersistentEntity and updates tables in Cassandra
optimized for queries
e Retrieving data: Cassandra Query Language
© e.g., SELECT id, title FROM postsummary

Lagom Supports

Java API!

Maven support

Message broker integration
Scala API

Support for other cluster orchestration tools
o Want Kubernetes support? Contribute! https://github.com/huntc/kubernetes-lib
e Coming soon:

o Support for writing integration tests
o Swagger integration

Lagom Resources
e Try Lagom yourself

o https://lightbend.com/lagom
e Using Scala with Lagom

o https://github.com/dotta/activator-lagom-scala-chirper/releases/tag/v02 s
caladays berlin 2016

e Lagom on Github
o https://github.com/lagom/lagom

e Read Jonas Bonér's free ebook Reactive Services Architecture
o https://lightbend.com/reactive-microservices-architecture

e Great presentation by Greg Young on why you should use ES
o https://www.youtube.com/watch?v=JHGkaShoyNs

https://lightbend.com/lagom
https://lightbend.com/lagom
https://github.com/dotta/activator-lagom-scala-chirper/releases/tag/v02_scaladays_berlin_2016
https://github.com/dotta/activator-lagom-scala-chirper/releases/tag/v02_scaladays_berlin_2016
https://github.com/dotta/activator-lagom-scala-chirper/releases/tag/v02_scaladays_berlin_2016
https://github.com/lagom/lagom
https://github.com/lagom/lagom
https://lightbend.com/reactive-microservices-architecture
https://lightbend.com/reactive-microservices-architecture
https://www.youtube.com/watch?v=JHGkaShoyNs
https://www.youtube.com/watch?v=JHGkaShoyNs

That's it!

Questions?

@seglo

